1. Bai, Z.-Z., Miao, C.-Q.: On local quadratic convergence of inexact simplified Jacobi–Davidson method. Linear Algebra Appl. 520, 215–241 (2017) 2. Bai, Z.-Z., Miao, C.-Q.: On local quadratic convergence of inexact simplified Jacobi–Davidson method for interior eigenpairs of Hermitian eigenproblems. Appl. Math. Lett. 72, 23–28 (2017) 3. Bai, Z.-Z., Miao, C.-Q., Jian, S.: On multistep Rayleigh quotient iterations for Hermitian eigenvalue problems. Comput. Math. Appl. 77, 2396–2406 (2019) 4. Chen, X.-P., Dai, H.: A novel numerical method to determine the algebraic multiplicity of nonlinear eigenvalues. Appl. Math. Comput. 271, 344–351 (2015) 5. Chen, X.-P., Dai, H.: A modified Newton method for nonlinear eigenvalue problems. East Asian J. Appl. Math. 8, 139–150 (2018) 6. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The Johns Hopkins University Press, Baltimore (2013) 7. Hadjidimos, A.: A note on Ostrowski’s theorem. Linear Algebra Appl. 439, 3785–3795 (2013) 8. Hadjidimos, A., Tzoumas, M.: On Brauer–Ostrowski and Brualdi sets. Linear Algebra Appl. 449, 175– 193 (2014) 9. Kostić, V., Varga, R.S., Cvetković, L.: Localization of generalized eigenvalues by Cartesian ovals. Numer. Linear Algebra Appl. 19, 728–741 (2012) 10. Lee, D., Hoshi, T., Sogabe, T., Miyatake, Y., Zhang, S.-L.: Solution of the k-th eigenvalue problem in large-scale electronic structure calculations. J. Comput. Phys. 371, 618–632 (2018) 11. Miao, C.-Q.: A filtered-Davidson method for large symmetric eigenvalue problems. East Asian J. Appl. Math. 7, 21–37 (2017) 12. Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia (1998) |