1. Afsane, S., Mahmoud, B.:Application Jacobi spectral method for solving the time-fractional differential equation. J. Comput. Appl. Math. 399, 49-68 (2018) 2. Bhrawy, A.H., Taha, M.T., Machado, J.A.T.:A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn. 81, 1023-1052 (2015) 3. Biler, P., Funaki, T., Woyczynski, W.A.:Fractal Burgers equations. J. Difer. Equ. 148(1), 9-46 (1998) 4. Canuto, C.G., Hussaini, M.Y., Quarteroni, A., Zang, T.A.:Spectral Methods:Fundamentals in Single Domains. Springer, New York (2010) 5. Chester, W.N.:Resonant ocillations in closed tubes. J. Fluid Mech. 18(1), 44-64 (1964) 6. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.:A new Jacobi operational matrix:an application for solving fractional diferential equations. Appl. Math. Model. 36, 4931-4943 (2012) 7. El-Shahed, M.:Adomian decomposition method for solving Burgers equation with fractional derivative. J. Fract. Calc. 24, 23-28 (2003) 8. Esen, A., Bulut, F., Oruç, Ö.:A unifed approach for the numerical solution of time fractional Burgers' type equations. Eur. Phys. J. Plus 131(4), 1-13 (2016) 9. Guo, B.Y.:Spectral Methods and Their Applications. World Scientifc, Singapore (1998) 10. Guo, B.Y., Wang, L.L.:Jacobi interpolation approximations and their applications to singular diferential equations. Adv. Comput. Math. 14, 227-276 (2001) 11. Guo, B.Y., Wang, L.L.:Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128, 1-41 (2004) 12. Inc, M.:The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345(1), 476-484 (2008) 13. Kakutanil, T., Matsuuchi, K.:Efect of viscosity on long gravity waves. J. Phys. Soc. Jpn. 39, 237-246 (1975) 14. Keller, J.J.:Propagation of simple non-linear waves in gas flled tubes with friction. Z. Angew. Math. Phys. 32(2), 170-181 (1982) 15. Khatera, A.H., Temsaha, R.S., Hassanb, M.M.:A Chebyshev spectral collocation method for solving Burgers'-type equations. J. Comput. Appl. Math. 222, 333-350 (2008) 16. Li, D., Zhang, C., Ran, M.:A linear fnite diference scheme for generalized time fractional Burgers equation. Appl. Math. Model. 40(11), 6069-6081 (2016) 17. Ma, H.P., Sun, W.W.:Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation. SIAM J. Numer. Anal. 39, 1380-1394 (2001) 18. Miksis, M.J., Ting, L.:Efective equations for multiphase fows-waves in a bubbly liquid. Adv. Appl. Mech. 28, 141-260 (1991) 19. Momani, S.:Non-perturbative analytical solutions of the space- and time-fractional Burgers equations. Chaos Soliton. Fract. 28(4), 930-937 (2006) 20. Podulubny, I.:Fractional Diferential Equations. Academic Press, San Diego (1999) 21. Shen, J., Tang, T.:Spectral and High-Order Methods with Applications. Science Press, Beijing (2006) 22. Shen, J., Tang, T., Wang, L.L.:Spectral Methods Algorithms, Analysis and Applications. Springer Series in Computational Mathematics. Springer, Berlin (2011) 23. Sugimoto, N.:Burgers equation with a fractional derivative; hereditary efects on nonlinear acoustic waves. J. Fluid Mech. 225, 631-653 (1991) 24. Wu, H., Ma, H.P., Li, H.Y.:Optimal error estimates of the Chebyshev-Legendre method for solving the generalized Burgers equation. SIAM J. Numer. Anal. 41, 659-672 (2003) 25. Yang, Y.B., Ma, H.P.:The Legendre Galerkin-Chebyshev collocation method for generalized spacefractional Burgers equations. J. Numer. Meth. Comput. Appl. 38(3), 236-244 (2017) 26. Zayernouri, M., Karniadakis, G.E.:Fractional spectral collocation method. SIAM J. Sci. Comput. 36(1), A40-A62 (2014) 27. Zhao, T.G., Wu, Y.J., Ma, H.P.:Error analysis of Chebyshev-Legendre pseudo-spectral method for a class of nonclassical parabolic equation. J. Sci. Comput. 52, 588-602 (2012) |