1. Aksoylu, B., Gazonas, G.A.:Inhomogeneous local boundary conditions in nonlocal problems. In:Proceedings of ECCOMAS2018, 6th European Conference on Computational Mechanics (ECCM 6) and 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK (In press) 2. Aksoylu, B., Gazonas, G.A.:On nonlocal problems with inhomogeneous local boundary conditions. J. Peridyn. Nonlocal Model (In press) 3. Aksoylu, B., Celiker, F.:Comparison of nonlocal operators utilizing perturbation analysis. In:Karasozen, B., Manguogiu, M., Tezer-Sezgin, M., Goktepe, S. (eds.) Numerical Mathematics and Advanced Applications ENUMATH 2015. Lecture Notes in Computational Science and Engineering, vol. 112, pp. 589-606. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-39929-4_57 4. Aksoylu, B., Celiker, F.:Nonlocal problems with local Dirichlet and Neumann boundary conditions. J. Mech. Mater. Struct. 12(4), 425-437 (2017). https://doi.org/10.2140/jomms.2017.12.425 5. Aksoylu, B., Kaya, A.:Conditioning and error analysis of nonlocal problems with local boundary conditions. J. Comput. Appl. Math. 335, 1-19 (2018). https://doi.org/10.1016/j.cam.2017.11.023 6. Aksoylu, B., Unlu, Z.:Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces. SIAM J. Numer. Anal. 52(2), 653-677 (2014). https://doi.org/10.1137/13092407X 7. Aksoylu, B., Beyer, H.R., Celiker, F.:Application and implementation of incorporating local boundary conditions into nonlocal problems. Numer. Funct. Anal. Optim. 38(9), 1077-1114 (2017). https://doi. org/10.1080/01630563.2017.1320674 8. Aksoylu, B., Beyer, H.R., Celiker, F.:Theoretical foundations of incorporating local boundary conditions into nonlocal problems. Rep. Math. Phys. 40(1), 39-71 (2017). https://doi.org/10.1016/S0034-4877(17)30061-7 9. Aksoylu, B., Celiker, F., Kilicer, O.:Nonlocal operators with local boundary conditions:an overview. In:Voyiadjis, G. (eds.) Handbook of Nonlocal Continuum Mechanics for Materials and Structures, pp. 1293-1330. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-58729-5_34 10. Aksoylu, B., Celiker, F., Kilicer, O.:Nonlocal problems with local boundary conditions in higher dimensions. Adv. Comp. Math. 45(1), 453-492 (2019). https://doi.org/10.1007/s10444-018-9624-6 11. Atkinson, K., Han, W.:Theoretical Numerical Analysis. Springer, New York (2009) 12. Beyer, H.R., Aksoylu, B., Celiker, F.:On a class of nonlocal wave equations from applications. J. Math. Phys. 57(6), 062902 (2016). https://doi.org/10.1063/1.4953252 13. Cortazar, C., Elgueta, M., Rossi, J.D., Wolanski, N.:How to approximate the heat equation with Neumann boundary conditions by nonlocal difusion problems. Arch. Rational Mech. Anal. 187(1), 137-156 (2008). https://doi.org/10.1007/s00205-007-0062-8 14. D'Elia, M., Tian, X., Yu, Y.:A physically-consistent, fexible and efcient strategy to convert local boundary conditions into nonlocal volume constraints (2019). arXiv:1906.04259 (Preprint) 15. Du, Q., Yang, J.:Asymptotically compatible fourier spectral approximations of nonlocal Allen-Cahn equations. SIAM J. Numer. Anal. 54(3), 1899-1919 (2016) 16. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.:Analysis and approximation of nonlocal difusion problems with volume constraints. SIAM Rev. 54, 667-696 (2012) 17. Du, Q., Lu, X.H., Lu, J., Tian, X.:A quasinonlocal coupling method for nonlocal and local difusion models. SIAM J. Numer. Anal. 56(3), 1386-1404 (2018) 18. Du, Q., Ju, L., Lu, J.:A discontinuous Galerkin method for one-dimensional time-dependent nonlocal difusion problems. Math. Comput. 88(315), 123-147 (2019) 19. Seleson, P., Parks, M.L.:On the role of the infuence function in the peridynamic theory. Int. J. Multiscale Comput. Eng. 9(6), 689-706 (2011) 20. Silling, S.:Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175-209 (2000) 21. Silling, S.A.:Introduction to peridynamics. In:Bobaru, F., Foster, J.T., Geubelle, P.H., Silling, S.A. (eds.) Handbook of Peridynamic Modeling, Advances in Applied Mathematics, pp. 25-60. Chapman and Hall, London (2017). https://doi.org/10.1201/9781315373331 22. Tao, Y., Tian, X., Du, Q.:Nonlocal difusion and peridynamic models with Neumann type constraints and their numerical approximations. Appl. Math. Comput. 305, 282-298 (2017) 23. Tian, X., Du, Q.:Analysis and comparison of diferent approximations to nonlocal difusion and linear peridynamic equations. SIAM J. Numer. Anal. 51(6), 3458-3482 (2013) 24. Tian, X., Du, Q.:Asymptotically compatible schemes and applications to robust discretization of nonlocal problems. SIAM J. Numer. Anal. 52(4), 1641-1665 (2014) 25. Tian, H., Ju, L., Du, Q.:Nonlocal convection-difusion problems and fnite element approximations. Comput. Methods Appl. Mech. Eng. 289, 60-78 (2015) 26. Tian, X., Du, Q., Gunzburger, M.:Asymptotically compatible schemes for the approximation of fractional Laplacian and related nonlocal difusion problems on bounded domains. Adv. Comput. Math. 42(6), 1363-1380 (2016) 27. Tian, H., Ju, L., Du, Q.:A conservative nonlocal convection-difusion model and asymptotically compatible fnite diference discretization. Comput. Methods Appl. Mech. Eng. 320, 46-67 (2017) 28. You, H., Lu, X., Trask, N., Yu, Y.:An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems (2019). arXiv:1908.03853 (Preprint) 29. Zhang, X., Wu, J., Ju, L.:An accurate and asymptotically compatible collocation scheme for nonlocal difusion problems. Appl. Numer. Math. 133, 52-68 (2018) |