1. Amara, M., Capatina-Papaghiuc, D., Chatti, A.: New locking-free mixed method for the Reissner-Mindlin thin plate model. SIAM. J. Numer. Anal. 40, 1561–1582 (2002) 2. Amara, M., Thomas, J.M.: Equilibrium finite elements for the linear elastic problem. Numer. Math. 33, 367–383 (1979) 3. Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RARIO Modél. Math. Anal. Numér. 19, 7–32 (1985) 4. Arnold, D.N., Brezzi, F., Falk, R.S., Marini, L.D.: Locking-free Reissner-Mindlin elements without reduced integration. Comput. Methods Appl. Mech. Eng. 196, 3660–3671 (2007) 5. Arnold, D.N., Brezzi, F., Marini, L.D.: A family of Discontinuous Galerkin finite elements for the ReissnerMindlin plate. J. Sci. Comput. 22/23, 25–45(2005) 6. Arnold, D.N., Falk, R.S.: A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26, 1276–1290 (1989) 7. Arnold, D.N., Falk, R.S.: The boundary layer for the Reissner-Mindlin plate model. SIAM J. Numer. Anal. 21, 281–312 (1990) 8. Arnold, D.N., Falk, R.S., Winther, R.: Differential complexes and stability of finite element methods. I. The de Rham complex, in Compatible Spatial Discretizations. IMA Vol. Math. Appl. 142, 23–46 (2005) 9. Arnold, D.N., Falk, R.S., Winther, R.: Piecewise polynomial differential forms and homological techniques in finite element theory. Acta Numer. 15, 1–155 (2006) 10. Bathe, K.J., Brezzi, F.: A simplified analysis of two-plate bending elements—the MITC4 and MITC9 elements. In: Pande, G.G., Middleton, J. (eds.) Numerical Techniques for Engineering Analysis and Design, pp. 407–417. Springer, Netherlands (1987) 11. Bathe, K.J., Dvorkin, E.: A four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation. Int. J. Numer. Methods Eng. 21, 367–383 (1985) 12. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer-Verlag, Berlin, Heidelberg (2013) 13. Brezzi, F., Bathe, K.J., Fortin, M.: Mixed-interpolated elements for Reissner-Mindlin plates. Int. J. Numer. Methods Eng. 28, 1787–1801 (1989) 14. Brezzi, F., Fortin, M.: Numerical approximation of Mindlin-Reissner plates. Math. Comp. 47, 151–158 (1986) 15. Brezzi, F., Fortin, M.: Mixed and Hybird Finite Element Methods. Springer-Verlag, New York (1991) 16. Behrens, E.M., Guzmán, J.: A new family of mixed methods for the Reissner-Mindlin plate model based on a system of first-order equations. J. Sci. Comput. 49, 137–166 (2011) 17. Carstensen, C., Hu, J.: A posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates. Math. Comp. 77, 611–632 (2008) 18. Chen, L., Hu, J., Huang, X.H.: Stabilized mixed finite element methods for linear elasticity on simplicial grids in Rn. Comput. Methods. Appl. Math. 17, 17–31 (2017) 19. Chen, L., Hu, J., Huang, X.H.: Fast auxiliary space preconditioner for linear elasticity in mixed form. Math. Comput. 87, 1601–1633 (2018) 20. Falk, R.S.: Finite elements for the Reissner-Mindlin plate. In: Boffi, D., Gastaldi, L. (eds) Mixed Finite Elements, Compatibility Conditions, and Applications. Lecture Notes in Mathematics, vol. 1939, pp. 195–232. Springer, Berlin, Heidelberg (2008) 21. Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. 2nd edition. SpringerVerlag, Berlin (1983) 22. Grisvard, P.: Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain. In: Hubbard, B. (eds) Numerical Solution of Partial Differential Equations-III, pp. 207–274. Academic Press (1976) 23. Guzmán, J.: A unified analysis of several mixed methods for elasticity with weak stress symmetry. J. Sci. Comput. 44, 156–169 (2010) 24. Hu, J.: Finite element approximations of symmetric tensors on simplicial grids in Rn: the higher order case. J. Comp. Math. 33, 283–296 (2015) 25. Hu, J.: A new family of efficient conforming mixed finite elements on both rectangular and cuboid meshes for linear elasticity in the symmetric formulation. SIAM J. Numer. Anal. 53, 1438–1463 (2015) 26. Hu, J., Man, H.Y., Wang, J.Y., Zhang, S.Y.: The simplest nonconforming mixed finite element method for linear elasticity in the symmetric formulation on n-rectangular grids. Comput. Math. Appl. 71, 1317–1336 (2016) 27. Hu, J., Man, H.Y., Zhang, S.Y.: A simple conforming mixed finite element for linear elasticity on rectangular grids in any space dimension. J. Sci. Comput. 58, 367–379 (2014) 28. Hu, J., Zhang, S.Y.: A family of conforming mixed finite elements for linear elasticity on triangular grids. arXiv:1406.7457 (2014) 29. Hu, J., Zhang, S.Y.: A family of conforming mixed finite elements for linear elasticity on tetrahedral grids. Sci. China Math. 58, 297–307 (2015) 30. Hu, J., Zhang, S.Y.: Finite element approximations of symmetric tensors on simplicial grids in Rn: the lower order case. Math. Model. Meth. Appl. Sci. 26, 1649–1669 (2016) 31. Scott, L.R., Zhang, S.: Finite-element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54, 483–493 (1990) 32. Stenberg, R.: On the construction of optimal mixed finite element methods for the linear elasticity problem. Numer. Math. 48, 447–462 (1986) |