[1] Agaskar A., Wang C., Lu Y.-M.: Randomized Kaczmarz algorithms: exact MSE analysis and optimal sampling probabilities. In: IEEE Global Conference on Signal and Information Processing, Atlanta, GA, pp. 389-393 (2014) [2] Ansorge, R.: Connections between the Cimmino-method and the Kaczmarz-method for the solution of singular and regular systems of equations. Computing 33, 367-375 (1984) [3] Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, Philadelphia (2021) [4] Bai, Z.-Z., Wang, L.: On convergence rates of Kaczmarz-type methods with different selection rules of working rows. Appl. Numer. Math. 186, 289-319 (2023) [5] Bai, Z.-Z., Wang, L., Muratova, G.V.: On relaxed greedy randomized augmented Kaczmarz methods for solving large sparse inconsistent linear systems. East Asian J. Appl. Math. 27, 323-332 (2021) [6] Bai, Z.-Z., Wang, L., Wu, W.-T.: On convergence rate of the randomized Gauss-Seidel method. Linear Algebra Appl. 611, 237-252 (2021) [7] Bai, Z.-Z., Wu, W.-T.: On greedy randomized Kaczmarz method for solving large sparse linear systems. SIAM J. Sci. Comput. 40, A592-A606 (2018) [8] Bai, Z.-Z., Wu, W.-T.: On convergence rate of the randomized Kaczmarz method. Linear Algebra Appl. 553, 252-269 (2018) [9] Bai, Z.-Z., Wu, W.-T.: On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems. Appl. Math. Lett. 83, 21-26 (2018) [10] Bai, Z.-Z., Wu, W.-T.: On partially randomized extended Kaczmarz method for solving large sparse overdetermined inconsistent linear systems. Linear Algebra Appl. 578, 225-250 (2019) [11] Bai, Z.-Z., Wu, W.-T.: On greedy randomized coordinate descent methods for solving large linear least-squares problems. Numer. Linear Algebra Appl. 26, e2237 (2019) [12] Bai, Z.-Z., Wu, W.-T.: On greedy randomized augmented Kaczmarz method for solving large sparse inconsistent linear systems. SIAM J. Sci. Comput. 43, A3892-A3911 (2021) [13] Bai, Z.-Z., Wu, W.-T.: Randomized Kaczmarz iteration methods: algorithmic extensions and convergence theory. Jpn. J. Ind. Appl. Math. 40, 1421-1443 (2023) [14] Carlton, M.: Probability and statistics for computer scientists. Am. Stat. 62, 271-272 (2008) [15] Chen, J.-Q., Huang, Z.-D.: On the error estimate of the randomized double block Kaczmarz method. Appl. Math. Comput. 370, 124907 (2020) [16] Clough, R.W., Penzien, J.: Structural Dynamics. McGrowHill Inc, New York (1975) [17] Davis, T., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38, 1-25 (2011) [18] Du, K., Si, W.-T., Sun, X.-H.: Randomized extended average block Kaczmarz for solving least squares. SIAM J. Sci. Comput. 42, A3541-A3559 (2020) [19] Elfving, T.: Block-iterative methods for consistent and inconsistent linear equations. Numer. Math. 35, 1-12 (1980) [20] Freund, R.W.: Krylov-subspace methods for reduced-order modeling in circuit simulation. J. Comput. Appl. Math. 123, 395-421 (2000) [21] Golub, G.H., Van Loan, C.F.: Matrix Computations. 4th edn. The Johns Hopkins University Press, Baltimore (2013) [22] Gordon, R., Bender, R., Herman, G.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29, 471-481 (1970) [23] Guo, W., Chen, H., Geng, W., Lei, L.: A modified Kaczmarz algorithm for computerized tomographic image reconstruction. IEEE Intern. Conf. Biom. Eng. Inf. 3, 1-4 (2009) [24] Jiang, Y., Wu, G., Jiang, L.: A semi-randomized Kaczmarz method with simple random sampling for large-scale linear systems. Adv. Comput. Math. 49, 20 (2023) [25] Kaczmarz, S.: Approximate solution of systems of linear equations. Int. J. Control 35, 355-357 (1937) [26] Lee, S., Kim, H.: Noise properties of reconstructed images in a kilo-voltage on-board imaging system with iterative reconstruction techniques: a phantom study. Phys. Med. 30, 365-373 (2014) [27] Leventhal, D., Lewis, A.: Randomized methods for linear constraints: convergence rates and conditioning. Math. Oper. Res. 35, 641-654 (2010) [28] Liu, Y., Gu, C.: On greedy randomized block Kaczmarz method for consistent linear systems. Linear Algebra Appl. 616, 178-200 (2021) [29] Ma, A., Needell, D., Ramdas, A.: Convergence properties of the randomized extended Gauss-Seidel and Kaczmarz methods. SIAM J. Matrix Anal. Appl. 36, 1590-1604 (2015) [30] Miao, C.-Q., Wu, W.-T.: On greedy randomized average block Kaczmarz method for solving large linear systems. J. Comput. Appl. Math. 413, 114372 (2022) [31] Necoara, I.: Faster randomized block Kaczmarz algorithms. SIAM J. Matrix Anal. Appl. 40, 1425-1452 (2019) [32] Needell, D., Tropp, J.: Paved with good intentions: analysis of a randomized block Kaczmarz method. Linear Algebra Appl. 441, 199-221 (2014) [33] Needell, D., Zhao, R., Zouzias, A.: Randomized block Kaczmarz method with projection for solving least squares. Linear Algebra Appl. 484, 322-343 (2015) [34] Niu, Y., Zheng, B.: A greedy block Kaczmarz algorithm for solving large-scale linear systems. Appl. Math. Letters. 104, 106294 (2020) [35] Popa, C., Zdunek, R.: Kaczmarz extended algorithm for tomographic image reconstruction from limited-data. Math. Comput. 65, 579-598 (2004) [36] Saad, Y.: Iterative Methods for Sparse Linear Systems, vol. 82. SIAM, Philadelphia (2003) [37] Sakurai, T., Tadano, H., Kuramashi, Y.: Application of block Krylov subspace algorithms to the Wilson-Dirac equation with multiple right-hand sides in lattice QCD. Comput. Phys. Commun. 181, 113-117 (2010) [38] Soudais, P.: Iterative solution of a 3D scattering problem from arbitrary shaped multidielectric and multiconducting bodies. IEEE Trans. Antennas Propag. 42, 954-959 (1994) [39] Steinerberger, S.: A weighted randomized Kaczmarz method for solving linear systems. Math. Comput. 90, 2815-2826 (2021) [40] Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15, 262-278 (2009) [41] Tajaddini, A., Wu, G., Saberi-Movahed, F., Azizizadeh, N.: Two new variants of the simpler block GMRES method with vector deflation and eigenvalue deflation for multiple linear systems. J. Sci. Comput. 86, 9 (2021) [42] Zhang, J.: A new greedy Kaczmarz algorithm for the solution of very large linear systems. Appl. Math. Lett. 91, 207-212 (2019) [43] Zhang, J., Guo, J.: On relaxed greedy randomized coordinate descent methods for solving large linear least-squares problems. Appl. Numer. Math. 157, 372-384 (2020) [44] Zouzias, A., Freris, N.: Randomized extended Kaczmarz for solving least-squares. SIAM J. Matrix Anal. Appl. 34, 773-793 (2012) |