1. Araujo, R.P., McElwain, D.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol. 66(5), 1039–1091 (2004) 2. Baskaran, A., Lowengrub, J.S., Wang, C., Wise, S.M.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51(5), 2851–2873 (2013) 3. Bidan, C.M., Wang, F.M., Dunlop, J.W.: A three-dimensional model for tissue deposition on complex surfaces. Comput. Methods Biomech. Biomed. Eng. 16(10), 1056–1070 (2013) 4. Browning, A.P., Maclaren, O.J., Buenzli, P.R., Lanaro, M., Allenby, M.C., Woodruff, M.A., Simpson, M.J.: Model-based data analysis of tissue growth in thin 3D printed scaffolds. J. Theor. Biol. 528, 110852 (2021) 5. Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 364(1843), 1563–1578 (2006) 6. Chen, W., Wang, C., Wang, X., Wise, S.M.: Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential. J. Comput. Phys. X 3, 100031 (2019) 7. Cristini, V., Lowengrub, J., Nie, Q.: Nonlinear simulation of tumor growth. J. Math. Biol. 46, 191–224 (2003) 8. Falcó, C., Cohen, D.J., Carrillo, J.A., Baker, R.E.: Quantifying tissue growth, shape and collision via continuum models and Bayesian inference. J. R. Soc. Interface 20(204), 20230184 (2023) 9. Feng, Y., He, Q., Liu, J.-G., Zhou, Z.: Rigorous derivation of a Hele-Shaw type model and its nonsymmetric traveling wave solution. arXiv:2404.16353 (2024) 10. Feng, Y., Tang, M., Xu, X., Zhou, Z.: Tumor boundary instability induced by nutrient consumption and supply. Z. Angew. Math. Phys. 74(3), 107 (2023) 11. Friedman, A., Reitich, F.: Symmetry-breaking bifurcation of analytic solutions to free boundary problems: an application to a model of tumor growth. Trans. Am. Math. Soc. 353(4), 1587–1634 (2001) 12. Greenspan, H.P.: Models for the growth of solid tumor as a problem by diffusion. Appl. Math. Comput. 30, 215–222 (1972) 13. Gu, Y., Shen, J.: Bound preserving and energy dissipative schemes for porous medium equation. J. Comput. Phys. 410, 109378 (2020) 14. Heinrich, M.A., Alert, R., LaChance, J.M., Zajdel, T.J., Košmrlj, A., Cohen, D.J.: Size-dependent patterns of cell proliferation and migration in freely-expanding epithelia. Elife 9, 58945 (2020) 15. Heinrich, M.A., Alert, R., Wolf, A.E., Košmrlj, A., Cohen, D.J.: Self-assembly of tessellated tissue sheets by expansion and collision. Nat. Commun. 13(1), 4026 (2022) 16. Jacobs, M., Kim, I., Tong, J.: Tumor growth with nutrients: regularity and stability. Commun. Am. Math. Soc. 3(04), 166–208 (2023) 17. Kim, I., Požár, N.: Porous medium equation to Hele-Shaw flow with general initial density. Trans. Am. Math. Soc. 370(2), 873–909 (2018) 18. Kim, I., Požár, N., Woodhouse, B.: Singular limit of the porous medium equation with a drift. Adv. Math. 349, 682–732 (2019) 19. Kim, I.C., Perthame, B., Souganidis, P.E.: Free boundary problems for tumor growth: a viscosity solutions approach. Nonlinear Anal. 138, 207–228 (2016) 20. Kim, I.C., Tong, J.: Interface dynamics in a two-phase tumor growth model. Interfaces Free Boundaries 23(2), 191–304 (2021) 21. Liu, J.-G., Tang, M., Wang, L., Zhou, Z.: An accurate front capturing scheme for tumor growth models with a free boundary limit. J. Comput. Phys. 364, 73–94 (2018) 22. Liu, J.-G., Wang, L., Zhou, Z.: Positivity-preserving and asymptotic preserving method for 2D KellerSegal equations. Math. Comput. 87(311), 1165–1189 (2018) 23. Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) 24. Qian, Y., Wang, C., Zhou, S.: Convergence analysis on a structure-preserving numerical scheme for the Poisson-Nernst-Planck-Cahn-Hilliard system. CSIAM Trans. Appl. Math. 4, 345–380 (2023) 25. Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM Rev. 49(2), 179–208 (2007) 26. Tong, J., Zhang, Y.P.: Convergence of free boundaries in the incompressible limit of tumor growth models. arXiv:2403.05804 (2024) 27. Vázquez, J.L.: The Porous Medium Equation: Mathematical Theory. Clarendon Press, Oxford (2006) 28. Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Appl. Numer. Math. 45(2/3), 331–351 (2003) |