[1] Azimzadeh, P., Bayraktar, E.: High order Bellman equations and weakly chained diagonally dominant tensors. SIAM J. Matrix Anal. Appl. 40(1), 276-298 (2019) [2] Bai, X., He, H., Ling, C., Zhou, G.: A nonnegativity preserving algorithm for multilinear systems with nonsingular \begin{document}$ {\cal{M} } $\end{document}-tensors. Numer. Algorithms 87(3), 1301-1320 (2021) [3] Chen, Y., Li, C.: A new preconditioned AOR method for solving multi-linear systems. Linear Multilinear Algebra 72(9), 1385-1402 (2024) [4] Cui, L., Li, M., Song, Y.: Preconditioned tensor splitting iterations method for solving multi-linear systems. Appl. Math. Lett. 96, 89-94 (2019) [5] Ding, W., Qi, L., Wei, Y.: \begin{document}$ {\cal{M} } $\end{document}-tensors and nonsingular \begin{document}$ {\cal{M} } $\end{document}-tensors. Linear Algebra Appl. 439, 3264-3278 (2013) [6] Ding, W., Wei, Y.: Solving multi-linear system with \begin{document}$ {\cal{M} } $\end{document}-tensors. J. Sci. Comput. 68(2), 689-715 (2016) [7] Han, L.: A homotopy method for solving multilinear systems with \begin{document}$ {\cal{M} } $\end{document}-tensors. Appl. Math. Lett. 69, 49-54 (2017) [8] He, H., Ling, C., Qi, L., Zhou, G.: A globally and quadratically convergent algorithm for solving multilinear systems with \begin{document}$ {\cal{M} } $\end{document}-tensors. J. Sci. Comput. 76(3), 1718-1741 (2018) [9] Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455-500 (2009) [10] Lai, F., Li, W., Peng, X., Chen, Y.: Anderson accelerated fixed-point iteration for multilinear PageRank. Numer. Linear Algebra Appl. 30(5), e2499 (2023) [11] Li, D., Guan, H.B., Wang, X.Z.: Finding a nonnegative solution to an \begin{document}$ {\cal{M} } $\end{document}-tensor equation. Pac. J. Optim. 16(3), 419-440 (2020) [12] Li, D., Xie, S., Xu, H.: Splitting methods for tensor equations. Numer. Linear Algebra Appl. 24(5), e2102 (2017) [13] Li, D., Xu, J., Guan, H.: Newton’s method for \begin{document}$ {\cal{M} } $\end{document}-tensor equations. J. Optim. Theory Appl. 190(2), 628-649 (2021) [14] Li, W., Liu, D., Vong, S.W.: Comparison results for splitting iterations for solving multi-linear systems. Appl. Numer. Math. 134, 105-121 (2018) [15] Liang, M., Zheng, B., Zhao, R.: Alternating iterative methods for solving tensor equations with applications. Numer. Algorithms 80(4), 1437-1465 (2019) [16] Lim, L.-H.: Singular values and eigenvalues of tensors: a variational approach. In: CAMSAP’05: Proceeding of the IEEE International Workshop on Computational Advances in Multi-sensor Adaptive Processing, pp. 129-132 (2005) [17] Liu, D., Li, W., Vong, S.W.: The tensor splitting with application to solve multi-linear systems. J. Comput. Appl. Math. 330, 75-94 (2018) [18] Liu, D., Li, W., Vong, S.W.: A new preconditioned SOR method for solving multi-linear systems with an \begin{document}$ {\cal{M} } $\end{document}-tensor. Calcolo 57(2), 1-18 (2020) [19] Liu, L., Li, X., Liu, S.: Further study on existence and uniqueness of positive solution for tensor equations. Appl. Math. Lett. 124, 107686 (2022) [20] Lyu, C., Ma, C.: A Levenberg-Marquardt method for solving semi-symmetric tensor equations. J. Comput. Appl. Math. 332, 13-25 (2018) [21] Ni, Q., Qi, L.: A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map. J. Glob. Optim. 61(4), 627-641 (2015) [22] Niu, J., Du, L., Sogabe, T., Zhang, S.: A tensor alternating Anderson-Richardson method for solving multilinear systems with \begin{document}$ {\cal{M}} $\end{document}-tensors (2024). arXiv:2401.07602 [23] Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. In: Classics in Applied Mathematics, vol. 30. Society for Industrial and Applied Mathematics, Philadelphia (2000) [24] Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302-1324 (2005) [25] Qi, L., Luo, Z.: Tensor Analysis: Spectral Theory and Special Tensors. Society for Industrial and Applied Mathematics (2017) [26] Toth, A., Kelley, C.T.: Convergence analysis for Anderson acceleration. SIAM J. Numer. Anal. 53(2), 805-819 (2015) [27] Walker, H.F., Ni, P.: Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 49(4), 1715-1735 (2011) [28] Wang, X., Che, M., Wei, Y.: Neural networks based approach solving multi-linear systems with \begin{document}$ {\cal{M} } $\end{document}-tensors. Neurocomputing 351, 33-42 (2019) [29] Wang, X., Mo, C., Che, M., Wei, Y.: Accelerated dynamical approaches for finding the unique positive solution of \begin{document}$ {\cal{K}} {\cal{S}} $\end{document}-tensor equations. Numer. Algorithms 88(4), 1787-1810 (2021) [30] Xie, Z., Jin, X., Wei, Y.: Tensor methods for solving symmetric \begin{document}$ {\cal{M} } $\end{document}-tensor systems. J. Sci. Comput. 74(1), 412-425 (2018) [31] Zhang, L., Qi, L., Zhou, G.: \begin{document}$ {\cal{M} } $\end{document}-tensors and some applications. SIAM J. Matrix Anal. Appl. 35, 437-452 (2014) [32] Zhang, Y., Liu, Q., Chen, Z.: Preconditioned Jacobi type method for solving multi-linear systems with \begin{document}$ {\cal{M} } $\end{document}-tensors. Appl. Math. Lett. 104, 106287 (2020) |