[1] Arridge, S.R.: Optical tomography in medical imaging. Inverse Probl. 15(2), R41-R93 (1999) [2] Axelsson, O., Kucherov, A.: Real valued iterative methods for solving complex symmetric linear systems. Numer. Linear Algebra Appl. 7(4), 197-218 (2000) [3] Axelsson, O., Neytcheva, M., Ahmad, B.: A comparison of iterative methods to solve complex valued linear algebraic systems. Numer. Algorithms 66(4), 811-841 (2014) [4] Bai, Z.-Z.: On preconditioned iteration methods for complex linear systems. J. Eng. Math. 93(1), 41-60 (2015) [5] Bai, Z.-Z.: A two-step matrix splitting iteration paradigm based on one single splitting for solving systems of linear equations. Numer. Linear Algebra Appl. (2023). https://doi.org/10.1002/nla.2510 [6] Bai, Z.-Z., Benzi, M., Chen, F.: Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 87, 93-111 (2010) [7] Bai, Z.-Z., Benzi, M., Chen, F.: On preconditioned MHSS iteration methods for complex symmetric linear systems. Numer. Algorithms 56, 297-317 (2011) [8] Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603-626 (2003) [9] Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, Philadelphia (2021) [10] Bai, Z.-Z., Yin, J.-F., Su, Y.-F.: A shift-splitting preconditioner for non-Hermitian positive definite matrices. J. Comput. Math. 24, 539-552 (2006) [11] Benzi, M., Bertaccini, D.: Block preconditioning of real-valued iterative algorithms for complex linear systems. IMA J. Numer. Anal. 28(3), 598-618 (2010) [12] Bertaccini, D.: Efficient preconditioning for sequences of parametric complex symmetric linear systems. Electron. Trans. Numer. Anal. 18(2), 49-64 (2004) [13] Dijk, W.V., Toyama, F.M.: Accurate numerical solutions of the time-dependent Schrödinger equation. Phys. Rev. E 75(3), 036707 (2007) [14] Feriani, A., Perotti, F., Simoncini, V.: Iterative system solvers for the frequency analysis of linear mechanical systems. Comput. Methods Appl. Mech. Eng. 190(13/14), 1719-1739 (2000) [15] Freund, R.W.: Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices. SIAM J. Sci. Stat. Comput. 13, 425-448 (1992) [16] Freund, R.W.: A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems. SIAM J. Sci. Comput. 14, 470-482 (1993) [17] Freund, R.W., Nachtigal, N.M.: QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60, 315-339 (1991) [18] Freund, R.W., Nachtigal, N.M.: An implementation of the QMR method based on coupled two-term recurrences. SIAM J. Sci. Comput. 15, 313-337 (1994) [19] Hezari, D., Edalatpour, V., Salkuyeh, D.K.: Preconditioned GSOR iterative method for a class of complex symmetric system of linear equations. Numer. Linear Algebra Appl. 22, 761-776 (2015) [20] Huang, Z.-G.: Modified two-step scale-splitting iteration method for solving complex symmetric linear systems. Comput. Appl. Math. (2021). https://doi.org/10.1007/s40314-021-01514-6 [21] Huang, Z.-G., Wang, L.-G., Xu, Z., Cui, J.-J.: An efficient two-step iterative method for solving a class of complex symmetric linear systems. Comput. Math. Appl. 75, 2473-2498 (2018) [22] Huang, Z.-G., Xu, Z., Cui, J.-J.: Preconditioned triangular splitting iteration method for a class of complex symmetric linear systems. Calcolo 56, 22 (2019). https://doi.org/10.1007/s10092-019-0318-3 [23] Li, J.-T., Ma, C.-F.: The parameterized upper and lower triangular splitting methods for saddle point problems. Numer. Algorithms 76, 413-425 (2017) [24] Li, X., Yang, A.-L., Wu, Y.-J.: Lopsided PMHSS iteration method for a class of complex symmetric linear systems. Numer. Algorithms 66, 555-568 (2014) [25] Li, X.-A., Zhang, W.-H., Wu, Y.-J.: On symmetric block triangular splitting iteration method for a class of complex symmetric system of linear equations. Appl. Math. Lett. 79, 131-137 (2018) [26] Liao, L.-D., Zhang, G.-F., Li, R.-X.: Optimizing and improving of the C-to-R method for solving complex symmetric linear systems. Appl. Math. Lett. 82, 70-84 (2018) [27] Liao, L.-D., Zhang, G.-F., Wang, X.: Extrapolation accelerated PRESB method for solving a class of block two-by-two linear systems. East Asian J. Appl. Math. 10, 520-531 (2020) [28] Poirier, B.: Efficient preconditioning scheme for block partitioned matrices with structured sparsity. Numer. Linear Algebra Appl. 7(7/8), 715-726 (2000) [29] Ren, Z.-R., Cao, Y., Zhang, L.-L.: On preconditioned MHSS real-valued iteration methods for a class of complex symmetric indefinite linear systems. East Asian J. Appl. Math. 6, 192-210 (2016) [30] Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003) [31] Salkuyeh, D.K., Hezari, D., Edalatpour, V.: Generalized successive overrelaxation iterative method for a class of complex symmetric linear system of equations. Int. J. Comput. Math. 92, 802-815 (2015) [32] van der Vorst, H.A., Melissen, J.B.M.: A Petrov-Galerkin type method for solving \begin{document}$ Ax = b $\end{document}, where \begin{document}$ A $\end{document} is symmetric complex. IEEE Trans. Magn. 26, 706-708 (1990) [33] Wang, T., Lu, L.-Z.: Alternating-directional PMHSS iteration method for a class of two-by-two block linear systems. Appl. Math. Lett. 58, 159-164 (2016) [34] Wang, T., Zheng, Q.-Q., Lu, L.-Z.: A new iteration method for a class of complex symmetric linear systems. J. Comput. Appl. Math. 325, 188-197 (2017) [35] Xiao, X.-Y., Qi, X., Zhao, Y.-C.: Improved CRI iteration methods for a class of complex symmetric linear systems. Calcolo 59, 20 (2022). https://doi.org/10.1007/s10092-022-00465-6 [36] Xie, X.-F., Huang, Z.-G., Cui, J.-J., Li, B.-B.: Minimum residual two-parameter TSCSP method for solving complex symmetric linear systems. Comput. Appl. Math. (2023). https://doi.org/10.1007/s40314-023-02195-z [37] Xiong, J.-S.: Modified upper and lower triangular splitting iterative method for a class of block two-by-two linear systems. Linear Multilinear Algebra 71, 29-40 (2023) [38] Yang, A.-L.: On the convergence of the minimum residual HSS iteration method. Appl. Math. Lett. 94, 210-216 (2019) [39] Yang, A.-L., Cao, Y., Wu, Y.-J.: Minimum residual Hermitian and skew-Hermitian splitting iteration method for non-Hermitian positive definite linear systems. BIT Numer. Math. 59, 299-319 (2019) [40] Zhang, J.-H., Dai, H.: A new iterative method for solving complex symmetric linear systems. Appl. Math. Comput. 302, 9-20 (2017) [41] Zhang, J.-H., Wang, Z.-W., Zhao, J.: Preconditioned symmetric block triangular splitting iteration method for a class of complex symmetric linear systems. Appl. Math. Lett. 86, 95-102 (2018) [42] Zhang, W.-H., Yang, A.-L., Wu, Y.-J.: Minimum residual modified HSS iteration method for a class of complex symmetric linear systems. Numer. Algorithms 86, 1543-1559 (2021) [43] Zhang, W.-H., Yang, A.-L., Wu, Y.-J.: Novel minimum residual MHSS iteration method for solving complex symmetric linear systems. Appl. Math. Lett. 148, 108869 (2024). https://doi.org/10.1016/j.aml.2023.108869 [44] Zheng, Q.-Q., Lu, L.-Z.: A shift-splitting preconditioner for a class of block two-by-two linear systems. Appl. Math. Lett. 66, 54-60 (2016) [45] Zheng, Q.-Q., Ma, C.-F.: A class of triangular splitting methods for saddle point problems. J. Comput. Appl. Math. 298, 13-23 (2016) [46] Zheng, Z., Zeng, M.-L., Zhang, G.-F.: A variant of PMHSS iteration method for a class of complex symmetric indefinite linear systems. Numer. Algorithms 91, 283-300 (2022) |