[1] Ayres, F.A.C., Bessa, I., Pereira, V.M.B., Farias, N.J.S., Menezes, A.R., Medeiros, R.L.P., Chaves, J.E., Lenzi, M.K., Costa, C.T.: Fractional order pole placement for a buck converter based on commensurable transfer function. ISA Trans. 107, 370-384 (2020) [2] Bai, Z.-Z., Gao, Y.-H., Lu, L.-Z.: Fast iterative schemes for nonsymmetric algebraic Riccati equations arising from transport theory. SIAM J. Sci. Comput. 30, 804-818 (2008) [3] Bai, Z.-Z., Guo, X.-X., Xu, S.-F.: Alternately linearized implicit iteration methods for the minimal nonnegative solutions of the nonsymmetric algebraic Riccati equations. Numer. Linear Algebra Appl. 13, 655-674 (2006) [4] Basset, A.B.: On the descent of a sphere in a viscous liquid. Q. J. Math. 41, 369-381 (1910) [5] Beaver, A.N., Denman, E.D.: A computational method for eigenvalues and eigenvectors of a matrix with real eigenvalues. Numer. Math. 21, 389-396 (1973) [6] Bettayeb, M., Djennoune, S.: A note on the controllability and the observability of fractional dynamical systems. In: Proceeding the 2nd IFAC Workshop on Fractional Differentiation and Its Applications, Portugal (2006) [7] Braim, A.B., Mesquine, F.: Pole assignment for continuous-time fractional order systems. Int. J. Syst. Sci. 50, 2113-2125 (2019) [8] Denman, E.D., Beaver, A.N.: The matrix sign function and computations in systems. Appl. Math. Comput. 2, 63-94 (1976) [9] Duan, G.-R.: Linear System Theory. Harbin Institute of Technology Press, Harbin (1996) [10] Guan, J.-R., Wang, Z.-X.: A generalized ALI iteration method for nonsymmetric algebraic Riccati equations. Numer. Algorithms (2023) [11] Guo, C.-H.: Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for \begin{document}$ M $\end{document}-matrices. SIAM J. Matrix Anal. Appl. 23, 225-242 (2001) [12] Guo, C.-H., Higham, N.J.: Iterative solution of a nonsymmetric algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 29, 396-412 (2007) [13] Guo, X.-X., Lin, W.-W., Xu, S.-F.: A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation. Numer. Math. 103, 393-412 (2006) [14] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific Publisher, Singapore (2000) [15] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) [16] Ladaci, S., Bensafia, Y.: Indirect fractional order pole assignment based adaptive control. Eng. Sci. Technol. Int. J. 19, 518-530 (2016) [17] Liu, G.-P., Patton, R.J.: Eigenstructure Assignment for Control System Design. Wiley, New York (1998) [18] Liu, L., Zhang, S.: Fractional-order partial pole assignment for time-delay systems based on resonance and time response criteria analysis. J. Franklin Inst. 356, 11434-11455 (2019) [19] Lu, L.-Z.: Solution form and simple iteration of a nonsymmetric algebraic Riccati equation arising in transport theory. SIAM J. Matrix Anal. Appl. 26, 679-685 (2005) [20] Lu, J.-G., Chen, G.-R.: Robust stability and stabilization of fractional order interval systems, an LMI approach. IEEE Trans. Autom. Control 54, 1294-1299 (2009) [21] Ma, C.-F., Lu, H.-Z.: Numerical study on nonsymmetric algebraic Riccati equations. Mediterr. J. Math. 13, 4961-4973 (2016) [22] Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Proceeding of Computational Engineering in Systems Applications, Lille (1996) [23] Monje, C.A., Chen, Y.-Q., Vinagre, B.M., Xue, D.-Y., Feliu, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, London (2010) [24] Wang, Z.-B., Cao, G.-Y., Zhu, X.-J.: Stability conditions and criteria for fractional order linear time invariant systems. Control Theory Appl. 21, 922-926 (2004) [25] Xie, Q.-H., Yao, M.-S., Wu, Q.-S.: Advanced Algebra, 3rd edn. Fudan University Press, Shanghai (2022) [26] Yang, T.-Y., Le, X.-Y., Wang, J.: Robust pole assignment for synthesizing fractional-order control systems via neurodynamic optimization. In: Proceeding of the 13th IEEE International Conference on Control and Automation, Macedonia (2017) [27] Yao, Z.-C., Yang, Z.-W., Fu, Y.-Q., Liu, S.-M.: Stability analysis of fractional-order differential equations with multiple delays: the \begin{document}$ 1 \lt \alpha \lt 2 $\end{document} case. Chin. J. Phys. 89, 1-24 (2023) [28] Zhang, J., Kang, H.-H., Tan, F.-Y.: Two-parameters numerical methods of the non-symmetric algebraic Riccati equation. J. Comput. Appl. Math. 378, 112933 (2020) [29] Zhang, Z.-S.: Modern Introduction to Mathematics Analysis, 2nd edn. Peking University Press, Beijing (2021) |