[1] Du, R.L., Li, C.P., Sun, Z.Z.: $ H^1 $-analysis of $ \text{ H3N3-2}_\sigma $-based difference method for fractional hyperbolic equations. Comput. Appl. Math. 43, 69 (2024) [2] Fan, E.Y., Li, C.P., Li, Z.Q.: Numerical approaches to Caputo-Hadamard fractional derivatives with applications to long-term integration of fractional differential systems. Commun. Nonlinear. Sci. Numer. Simul. 106, 106096 (2022) [3] Fan, E.Y., Li, C.P., Li, Z.Q.: Numerical methods for the Caputo-type fractional derivative with an exponential kernel. J. Appl. Anal. Comput. 13(1), 376–423 (2023) [4] Gohar, M., Li, C.P., Li, Z.Q.: Finite difference methods for Caputo-Hadamard fractional differential equations. Mediterr. J. Math. 17(6), 194 (2020) [5] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) [6] Li, C.P., Li, Z.Q.: Stability and logarithmic decay of the solution to Hadamard-type fractional differential equation. J. Nonlinear Sci. 31(2), 31 (2021) [7] Li, C.P., Li, Z.Q.: On blow-up for a time-space fractional partial differential equation with exponential kernel in temporal derivative. J. Math. Sci. 266(3), 381–394 (2022) [8] Li, C.P., Li, Z.Q., Wang, Z.: Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation. J. Sci. Comput. 85(2), 41 (2020) [9] Li, C.P., Li, Z.Q., Yin, C.T.: Which kind of fractional partial differential equations has solution with exponential asymptotics? In: Dzielinski, A., Sierociuk, D., Ostalczyk, P. (eds.) Proceedings of the International Conference on Fractional Differentiation and Its Applications (ICFDA’21), pp. 112–117. Springer, Cham (2022) |