1. Adams, M.L., Larsen, E.W.: Fast iterative methods for discrete-ordinates particle transport calculations. Prog. Nucl. Energy 40, 3–159 (2002) 2. Azmy, Y., Sartori, E.: Nuclear Computational Science: a Century in Review. Springer, Berlin (2010) 3. Coelho, P.J.: Advances in the discrete ordinates and finite volume methods for the solution of radiative heat transfer problems in participating media. J. Quant. Spectrosc. Radiat. Transf. 145, 121–146 (2014) 4. Fleck, J.A., Jr., Cummings, J., Jr.: An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport. J. Comput. Phys. 8(3), 313–342 (1971) 5. Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21(2), 441–454 (1999) 6. Jin, S., Ma, Z., Wu, K.: Asymptotic-preserving neural networks for multiscale time-dependent linear transport equations. J. Sci. Comput. 94(3), 57 (2023) 7. Jin, S., Pareschi, L., Toscani, G.: Uniformly accurate diffusive relaxation schemes for multiscale transport equations. SIAM J. Numer. Anal. 38(3), 913–936 (2000) 8. Klar, A.: An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35(3), 1073–1094 (1998) 9. Klar, A., Schmeiser, C.: Numerical passage from radiative heat transfer to nonlinear diffusion models. Math. Models Methods Appl. Sci. 11(05), 749–767 (2001) 10. Larsen, E.W., Morel, J.E., Miller, W.F.: Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II. J. Comput. Phys. 69(2), 283–324 (1989) 11. Larsen, E.W., Pomraning, G.C., Badham, V.C.: Asymptotic analysis of radiative transfer problems. J. Quant. Spectrosc. Radiat. Transf. 29(4), 285–310 (1983) 12. Li, Q., Jiang, S., Sun, W., Xu, X.: An asymptotic-preserving hybrid angular discretization for the gray radiative transfer equations. Nucl. Sci. Eng. 198(5), 993–1020 (2024) 13. Li, Q., Lu, J., Sun, W.: Diffusion approximations and domain decomposition method of linear transport equations: asymptotics and numerics. J. Comput. Phys. 292, 141–167 (2015) 14. McClarren, R.G., Rossmanith, J.A., Shin, M.: Semi-implicit hybrid discrete (hn t ) approximation of thermal radiative transfer. J. Sci. Comput. 90(1), 1–29 (2022) 15. Mieussens, L.: On the asymptotic preserving property of the unified gas kinetic scheme for the diffusion limit of linear kinetic models. J. Comput. Phys. 253, 138–156 (2013) 16. Shin, M.: Hybrid discrete (hn t ) approximations to the equation of radiative transfer. Ph.D. thesis, Iowa State University, Ames, USA (2019) 17. Steinberg, E., Heizler, S.I.: Multi-frequency implicit semi-analog Monte-Carlo (ISMC) radiative transfer solver in two-dimensions (without teleportation). J. Comput. Phys. 450, 110806 (2022) 18. Steinberg, E., Heizler, S.I.: A new discrete implicit Monte Carlo scheme for simulating radiative transfer problems. Astrophys. J. Suppl. Ser. 258(1), 14 (2022) 19. Sun, W., Jiang, S., Xu, K.: An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations. J. Comput. Phys. 285, 265–279 (2015) 20. Sun, W., Jiang, S., Xu, K.: An implicit unified gas kinetic scheme for radiative transfer with equilibrium and non-equilibrium diffusive limits. Commun. Comput. Phys. 22(4), 889–912 (2017) 21. Sun, W., Jiang, S., Xu, K.: A multidimensional unified gas-kinetic scheme for radiative transfer equations on unstructured mesh. J. Comput. Phys. 351, 455–472 (2017) 22. Sun, W., Jiang, S., Xu, K., Li, S.: An asymptotic preserving unified gas kinetic scheme for frequencydependent radiative transfer equations. J. Comput. Phys. 302, 222–238 (2015) 23. Xu, K.: Direct modeling for computational fluid dynamics. Acta. Mech. Sin. 31(3), 303–318 (2015) 24. Xu, K., Huang, J.-C.: A unified gas-kinetic scheme for continuum and rarefied flows. J. Comput. Phys. 229(20), 7747–7764 (2010) 25. Xu, X., Jiang, S., Sun, W.: A positive and asymptotic preserving filtered PN method for the gray radiative transfer equations. J. Comput. Phys. 444, 110546 (2021) 26. Xu, X., Sun, W., Jiang, S.: An asymptotic preserving angular finite element based unified gas kinetic scheme for gray radiative transfer equations. J. Quant. Spectrosc. Radiat. Transf. 243, 106808 (2020) |