1. Acosta, G., Bersetche, F.M., Borthagaray, J.P.: A short FE implementation for a 2D homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. 74, 784–816 (2017) 2. Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55, 472–495 (2017) 3. Ainsworth, M., Glusa, C.: Aspects of an adaptive finite element method for the fractional Laplacian: a priori and a posteriori error estimates, efficient implementation and multigrid solver. Comput. Methods Appl. Mech. Eng. 327, 4–35 (2017) 4. Ainsworth, M., Glusa, C.: Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains. In: Contemporary Computational Mathematics—a Celebration of the 80th Birthday of Ian Sloan, pp. 17–57. Springer, Cham (2018) 5. Antil, H., Brown, T., Khatri, R., Onwunta, A., Verma, D., Warma, M.: Chapter 3 — Optimal control, numerics, and applications of fractional PDEs. In: Handbook of Numerical Analysis, vol. 23, pp. 87–114. Elsevier, Amsterdam (2022) 6. Antil, H., Dondl, P., Striet, L.: Approximation of integral fractional Laplacian and fractional PDEs via sinc-basis. SIAM J. Sci. Comput. 43, A2897–A2922 (2021) 7. Bonito, A., Lei, W., Pasciak, J.E.: Numerical approximation of the integral fractional Laplacian. Numer. Math. 142, 235–278 (2019) 8. Burkardt, J., Wu, Y., Zhang, Y.: A unified meshfree pseudospectral method for solving both classical and fractional PDEs. SIAM J. Sci. Comput. 43, A1389–A1411 (2021) 9. Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4, 97–108 (1989). (Computational geometry (Waterloo, ON) (1987)) 10. Du, N., Sun, H.-W., Wang, H.: A preconditioned fast finite difference scheme for space-fractional diffusion equations in convex domains. Comput. Appl. Math. 38, 14 (2019) 11. Du, Q., Ju, L., Lu, J.: A discontinuous Galerkin method for one-dimensional time-dependent nonlocal diffusion problems. Math. Comput. 88, 123–147 (2019) 12. Duo, S., van Wyk, H.W., Zhang, Y.: A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem. J. Comput. Phys. 355, 233–252 (2018) 13. Dyda, B., Kuznetsov, A., Kwaśnicki, M.: Fractional Laplace operator and Meijer G-function. Constr. Approx. 45, 427–448 (2017) 14. Faustmann, M., Karkulik, M., Melenk, J.M.: Local convergence of the FEM for the integral fractional Laplacian. SIAM J. Numer. Anal. 60, 1055–1082 (2022) 15. Hao, Z., Zhang, Z., Du, R.: Fractional centered difference scheme for high-dimensional integral fractional Laplacian. J. Comput. Phys. 424, 109851 (2021) 16. Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods. Applied Mathematical Sciences Series, vol. 174. Springer, New York (2011) 17. Huang, W., Shen, J.: A grid-overlay finite difference method for the fractional Laplacian on arbitrary bounded domains. SIAM J. Sci. Comput. (to appear). http:// arxiv. org/ abs/ arXiv: 2307. 14437 (2023) 18. Huang, Y., Oberman, A.: Numerical methods for the fractional Laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52, 3056–3084 (2014) 19. Huang, Y., Oberman, A.: Finite difference methods for fractional Laplacians. arXiv: 1611. 00164 (2016) 20. Li, H., Liu, R., Wang, L.-L.: Efficient Hermite spectral-Galerkin methods for nonlocal diffusion equations in unbounded domains. Numer. Math. Theory Methods Appl. 15, 1009–1040 (2022) 21. Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M. M., Ainsworth, M., Karniadakis, G. E.: What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, 109009 (2020) 22. Liu, G.R.: Meshfree Methods: Moving Beyond the Finite Element Method, 2nd edn. CRC Press, Boca Raton (2010) 23. Minden, V., Ying, L.: A simple solver for the fractional Laplacian in multiple dimensions. SIAM J. Sci. Comput. 42, A878–A900 (2020) 24. Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, 48391 (2006) 25. Ortigueira, M.D.: Fractional central differences and derivatives. J. Vib. Control 14, 1255–1266 (2008) 26. Pang, G., Chen, W., Fu, Z.: Space-fractional advection-dispersion equations by the Kansa method. J. Comput. Phys. 293, 280–296 (2015) 27. Pang, H.-K., Sun, H.-W.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012) 28. Shewchuk, J.R.: General-dimensional constrained Delaunay and constrained regular triangulations. I. Combinatorial properties. Discrete Comput. Geom. 39, 580–637 (2008) 29. Somasekhar, M., Vivek, S., Malagi, K.S., Ramesh, V., Deshpande, S.M.: Adaptive cloud refinement (ACR)-adaptation in meshless framework. Commun. Comput. Phys. 11, 1372–1385 (2012) 30. Song, F., Xu, C., Karniadakis, G.E.: Computing fractional Laplacians on complex-geometry domains: algorithms and simulations. SIAM J. Sci. Comput. 39, A1320–A1344 (2017) 31. Suchde, P., Jacquemin, T., Davydov, O.: Point cloud generation for meshfree methods: an overview. Arch. Comput. Methods Eng. 30, 889–915 (2023) 32. Sun, J., Nie, D., Deng, W.: Algorithm implementation and numerical analysis for the two-dimensional tempered fractional Laplacian. BIT 61, 1421–1452 (2021) 33. Tian, X., Du, Q.: Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51, 3458–3482 (2013) 34. Trobec, R., Kosec, G.: Parallel Scientific Computing: Theory, Algorithms, and Applications of Mesh Based and Meshless Methods. SpringerBriefs in Computer Science, Springer, Cham (2015) 35. Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012) |