[1] Aghajani, A., Moradifam, A.: Nonexistence of limit cycles in two classes of predator-prey systems. Appl. Math. Comput. 175, 356–365 (2006) [2] He, M.X., Li, Z.: Global dynamics of a Leslie-Gower predator-prey model with square root response function. Appl. Math. Lett. 140, 108561 (2023) [3] Hsu, S.-B., Huang, T.-W.: Global stability for a class of predator-prey systems. SIAM J. Appl. Math. 55(3), 763–783 (1995) [4] Korobeinikov, A.: A Lyapunov function for Leslie-Gower predator-prey models. Appl. Math. Lett. 14, 697–699 (2001) [5] LaSalle, J.P.: The stability of dynamical systems. In: Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1976) [6] Leslie, P.H.: Some further notes on the use of matrices in population mathematics. Biometrika 35, 213–245 (1948) [7] Leslie, P.H.: A stochastic model for studying the properties of certain biological systems by numerical methods. Biometrika 45, 16–31 (1958) [8] Li, Y.J., He, M.X., Li, Z.: Dynamics of a ratio-dependent Leslie-Gower predator-prey model with Allee effect and fear effect. Math. Comput. Simul. 201, 417–439 (2022) [9] Lin, Q., Liu, C., Xie, X., Xu, Y.: Global attractivity of Leslie-Gower predator-prey model incorporating prey cannibalism. Adv. Differ. Equ. 2020, 153 (2020) [10] Meyer, P.: Bi-logistic growth. Technol. Forecast. Soc. Change 47, 89–102 (1994) [11] Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (1996) [12] Pielou, E.C.: Mathematical Ecology. Wiley, New York (1977) [13] Qiu, H.H., Guo, S.J.: Bifurcation structures of a Leslie-Gower model with diffusion and advection. Appl. Math. Lett. 135, 108391 (2023) [14] Safuan, H.M., Sidhu, H.S., Jovanoski, Z., Towers, I.N.: A two-species predator-prey model in an environment enriched by a biotic resource. Anziam J. 54, 768–787 (2014) [15] Shepherd, J.J., Stojkov, L.: The logistic population model with slowly varying carrying capacity. Anziam J. 47, 492–506 (2005) [16] Zhang, D.X., Ping, Y.: Necessary and sufficient conditions for the nonexistence of limit cycles of Leslie-Gower predator-prey models. Appl. Math. Lett. 71, 1–5 (2017) |