1. Asadi, Z., Taccogna, F., Sharifian, M.: Numerical study of electron cyclotron drift instability: application to hall thruster. Front. Phys. 7, 140 (2019) 2. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2/3), 151–167 (1997) 3. Auzinger, W.: Coefficients of various splitting methods. http:// www. asc. tuwien. ac. at/ ~winfr ied/ split ting/ 4. Auzinger, W., Herfort, W.: Local error structures and order conditions in terms of Lie elements for exponential splitting schemes. Opuscula Math. 34(2), 243–255 (2014) 5. Auzinger, W., Hofstätter, H., Ketcheson, D., Koch, O.: Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: construction of optimized schemes and pairs of schemes. BIT Numer. Math. 57(1), 55–74 (2017) 6. Auzinger, W., Koch, O., Quell, M.: Adaptive high-order splitting methods for systems of nonlinear evolution equations with periodic boundary conditions. Numer. Algorithms 75(1), 261–283 (2017). https:// doi. org/ 10. 1007/ s11075- 016- 0206-8 7. Bernier, J., Casas, F., Crouseilles, N.: Splitting methods for rotations: application to Vlasov equations. SIAM J. Sci. Comput. 42(2), 666–697 (2020). https:// doi. org/ 10. 1137/ 19M12 73918 8. Besse, N., Mehrenberger, M.: Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson system. Math. Comput. 77(261), 93–123 (2008) 9. Boeuf, J.-P., Garrigues, L.: E×B electron drift instability in Hall thrusters: particle-in-cell simulations vs. theory. Phys. Plasmas 25(6), 061204 (2018) 10. Casas, F., Escorihuela-Tomàs, A.: Composition methods for dynamical systems separable into three parts. Mathematics 8(4), 533 (2020) 11. Cavalier, J., Lemoine, N., Bonhomme, G., Tsikata, S., Honore, C., Gresillon, D.: Hall thruster plasma fluctuations identified as the E×B electron drift instability: modeling and fitting on experimental data. Phys. Plasmas 20(8), 082107 (2013) 12. Charoy, T., Lafleur, T., Laguna, A.A., Bourdon, A., Chabert, P.: The interaction between ion transittime and electron drift instabilities and their effect on anomalous electron transport in Hall thrusters. Plasma Sources Sci. Technol. 30(6), 065017 (2021) 13. Cheng, C.: The integration of the Vlasov equation for a magnetized plasma. J. Comput. Phys. 24(4), 348–360 (1977) 14. Cheng, C.-Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22(3), 330–351 (1976) 15. Coulaud, O., Sonnendrücker, E., Dillon, E., Bertrand, P., Ghizzo, A.: Parallelization of semi-Lagrangian vlasov codes. J. Plasma Phys. 61(3), 435–448 (1999) 16. Crouseilles, N., Einkemmer, L., Faou, E.: Hamiltonian splitting for the Vlasov-Maxwell equations. J. Comput. Phys. 283, 224–240 (2015) 17. Crouseilles, N., Mehrenberger, M., Sonnendrücker, E.: Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229(6), 1927–1953 (2010) 18. Crouseilles, N., Respaud, T., Sonnendrücker, E.: A forward semi-Lagrangian method for the numerical solution of the Vlasov equation. Comput. Phys. Commun. 180(10), 1730–1745 (2009) 19. Gary, S.P.: Theory of Space Plasma Microinstabilities, vol. 7. Cambridge University Press, Cambridge (1993) 20. Ghizzo, A., Huot, F., Bertrand, P.: A non-periodic 2D semi-Lagrangian Vlasov code for laser-plasma interaction on parallel computer. J. Comput. Phys. 186(1), 47–69 (2003) 21. Hairer, E., Wanner, G., Lubich, C.: Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, vol. 31. Springer, Heidelberg (2006) 22. Hara, K., Tsikata, S.: Cross-field electron diffusion due to the coupling of drift-driven microinstabilities. Phys. Rev. E 102(2), 023202 (2020) 23. Janhunen, S., Smolyakov, A., Chapurin, O., Sydorenko, D., Kaganovich, I., Raitses, Y.: Nonlinear structures and anomalous transport in partially magnetized E×B plasmas. Phys. Plasmas 25(1), 011608 (2018) 24. Janhunen, S., Smolyakov, A., Sydorenko, D., Jimenez, M., Kaganovich, I., Raitses, Y.: Evolution of the electron cyclotron drift instability in two-dimensions. Phys. Plasmas 25(8), 082308 (2018) 25. Kormann, K., Reuter, K., Rampp, M.: A massively parallel semi-Lagrangian solver for the six-dimensional Vlasov-Poisson equation. Int. J. High Perform. Comput. Appl. 33(5), 924–947 (2019) 26. Lafleur, T., Baalrud, S., Chabert, P.: Theory for the anomalous electron transport in hall effect thrusters. I. Insights from particle-in-cell simulations. Phys. Plasmas 23(5), 053502 (2016) 27. Lefever, R., Nicolis, G.: Chemical instabilities and sustained oscillations. J. Theor. Biol. 30(2), 267– 284 (1971). https:// doi. org/ 10. 1016/ 0022- 5193(71) 90054-3 28. Mandal, D., Elskens, Y., Lemoine, N., Doveil, F.: Cross-field chaotic transport of electrons by E×B electron drift instability in hall thruster. Phys. Plasmas 27(3), 032301 (2020) 29. Marchuk, G.I.: On the theory of the splitting-up method. In: Hubbard, B. (ed.) Numerical Solution of Partial Differential Equations-II, pp. 469–500. Academic Press, London (1971) 30. Qiu, J.-M., Christlieb, A.: A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229(4), 1130–1149 (2010) 31. Ropp, D.L., Shadid, J.N.: Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems. J. Comput. Phys. 203(2), 449–466 (2005) 32. Sengupta, M., Smolyakov, A.: Mode transitions in nonlinear evolution of the electron drift instability in a 2D annular E×B system. Phys. Plasmas 27(2), 022309 (2020) 33. Shoucri, M.: The method of characteristics for the numerical solution of hyperbolic differential equations. In: Baswell, A.R. (ed.) Advances in Mathematics Research, vol. 8, pp. 1–87. Nova Science Publishers, Inc., New York (2009) 34. Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149(2), 201–220 (1999) 35. Staniforth, A., Côté, J.: Semi-Lagrangian integration schemes for atmospheric models—a review. Mon. Weather Rev. 119(9), 2206–2223 (1991) 36. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968) 37. Tanaka, S., Yoshikawa, K., Minoshima, T., Yoshida, N.: Multidimensional Vlasov-Poisson simulations with high-order monotonicity- and positivity-preserving schemes. Astrophys. J. 849(2), 76 (2017) 38. Tavassoli, A.: Drift instabilities, anomalous transport, and heating in low-temperature plasmas. PhD thesis. University of Saskatchewan, SK, Canada (2023) 39. Tavassoli, A., Chapurin, O., Jimenez, M., Papahn Zadeh, M., Zintel, T., Sengupta, M., Couëdel, L., Spiteri, R.J., Shoucri, M., Smolyakov, A.: The role of noise in PIC and Vlasov simulations of the Buneman instability. Phys. Plasmas 28(12), 122105 (2021) 40. Tavassoli, A., Papahn Zadeh, M., Smolyakov, A., Shoucri, M., Spiteri, R.J.: The electron cyclotron drift instability: a comparison of particle-in-cell and continuum Vlasov simulations. Phys. Plasmas 30, 3 (2023) 41. Tavassoli, A., Shoucri, M., Smolyakov, A., Papahn Zadeh, M., Spiteri, R.J.: Backward waves in the nonlinear regime of the Buneman instability. Phys. Plasmas 28(2), 022307 (2021) 42. Tavassoli, A., Smolyakov, A., Shoucri, M., Spiteri, R.J.: Nonlinear regimes of the electron cyclotron drift instability in Vlasov simulations. Phys. Plasmas 29(3), 030701 (2022) |