1. Andrews, L.C., Phillips, R.L.:Laser Beam Propagation Through Random Media. SPIE Press, Bellingham (2005) 2. Andreas, S.:Locally implicit time integration for linear Maxwell's equations, Ph. D. Thesis, Karlsruhe (2017) 3. Bridges, T., Reich, S.:Multi-symplectic integrators:numerical schemes for Hamiltonian PDEs that conserve symplecticity. Phys. Lett. A 284, 184-193 (2001) 4. Bridges, T., Reich, S.:Numerical methods for Hamiltonian PDEs. J. Phys. A Math. Gen. 39, 5287- 5320 (2006) 5. Badieirostami, M., Adibi, A., Zhou, H., Chow, S.:Wiener chaos expansion and simulation of electromagnetic wave propagation excited by a spatially incoherent source. Multiscale Model. Simul. 8, 591-604 (2010) 6. Benner, P., Schneider, J.:Uncertainty quantification for Maxwell's equations using stochastic collocation and model order reduction. Int. J. Uncertain. Quantif. 5, 195-208 (2015) 7. Chan, D.L.C., Soljacic, M., Joannopoulos, J.D.:Direct calculation of thermal emission for three dimensionally periodic photonic crystal slabs. Phys. Rev. E 74, 036615 (2006) 8. Chen, C., Hong, J., Zhang, L.:Preservation of physical properties of stochastic Maxwell equations with additive noise via stochastic multi-symplectic methods. J. Comput. Phys. 306, 500-519 (2016) 9. Chen, C., Hong, J.:Symplectic Runge-Kutta semidiscretization for stochastic Schrödinger equation. SIAM. J. Numer. Anal. 54, 2569-2593 (2016) 10. Chen, C., Hong, J., Ji, L.:Mean-square convergence of a semidiscrete scheme for stochastic Maxwell equations. SIAM. J. Numer. Anal. 57, 728-750 (2019) 11. Chen, C., Hong, J., Ji, L.:Runge-Kutta semidiscretizations for stochastic Maxwell equations with additive noise. SIAM J. Numer. Anal. 57, 702-727 (2019) 12. Deng, J., Anton, C., Wong, Y.:High-order symplectic schemes for stochastic Hamiltonian systems. Commun. Comput. Phys. 16, 169-200 (2014) 13. Eyges, L.:The Classical Electromagnetic Fields. Addison-Wesley, New York (1972) 14. Engel, K.J., Nagel, R.:One-Parameter Semigroups for Linear Evolution Equations. Springer, Berlin (2000) 15. Francoeur, M., Mengüç, M.:Role of fluctuational electrodynamics in near-field radiative heat transfer. J. Quant. Spectrosc. Radiat. Transf. 109, 280-293 (2008) 16. Feng, K., Qin, M.:Symplectic Geometric Algorithms for Hamiltonian Systems. Springer-Verlag/Zhejiang Publishing United Group, Zhejiang Science and Technology Publishing House, Berlin/Hangzhou (2010) 17. Fouque, J.P., Garnier, J., Papanicolaou, G., Sølna, K.:Wave Propagation and Time Reversal in Randomly Layered Media. Springer, New York (2007) 18. Field, T.R.:Electromagnetic Scattering from Random Media. Oxford University Press, Oxford (2009) 19. Goldsmith, A.:Wireless Communications. Cambridge University Press, Cambridge (2005) 20. Hairer, E., Lubich, C., Wanner, G.:Geometric Numerical Integration:Structure Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002) 21. Horsin, T., Stratis, I.G., Yannacopoulos, A.N.:On the approximate controllability of the stochastic Maxwell equations. IMA J. Math. Control. I. 27, 103-118 (2010) 22. Hong, J., Ji, L., Zhang, L.:A stochastic multi-symplectic scheme for stochastic Maxwell equations with additive noise. J. Comput. Phys. 268, 255-268 (2014) 23. Hong, J., Ji, L., Zhang, L., Cai, J.:An energy-conserving method for stochastic Maxwell equations with multiplicative noise. J. Comput. Phys. 351, 216-229 (2017) 24. Hornung, L.:Strong solutions to a nonlinear stochastic Maxwell equation with a retarded material law. J. Evol. Equ. 18, 1427-1469 (2018) 25. Ikeda, N., Watanabe, S.:Stochastic Differential Equations and Diffusion Processes. North-Holland Publishing Company, Amsterdam (1981) 26. Jackson, J.D.:Classical Electrodynamics, 3rd edn. Wiley, New York (1999) 27. Jiang, S., Wang, L., Hong, J.:Stochastic multi-symplectic integrator for stochastic nonlinear Schrödinger equation. Commun. Comput. Phys. 14, 393-411 (2013) 28. Jung, C.:Evolution of probability distribution in time for solutions of hyperbolic equations. J. Sci. Comput. 41, 13-48 (2009) 29. Jung, C., Kwon, B., Mahalov, A., Nguyen, T.:Maxwell solutions in media with multiple random interfaces. Int. J. Numer. Anal. Mod. 11, 194-213 (2014) 30. Karlsson, A., Kristensson, G.:Constitutive relations, dissipation and reciprocity for the Maxwell equations in the time domain. J. Electrom. Waves Appl. 6, 537-551 (1992) 31. Liaskos, K.B., Stratis, I.G., Yannacopoulos, A.N.:Stochastic integrodifferential equations in Hilbert spaces with applications in electromagnetics. J. Integral Equations Appl. 22, 559-590 (2010) 32. Liu, G.:Stochastic wave propagation in Maxwell's equations. J. Stat. Phys. 158, 1126-1146 (2015) 33. Li, J., Fang, Z., Lin, G.:Regularity analysis of metamaterial Maxwell equations with random coefficients and initial conditions. Comput. Methods Appl. Mech. Engrg. 335, 24-51 (2018) 34. Marsden, J., Patrick, G., Shkoller, S.:Multi-symplectic geometry, variational integrators, and nonlinear PDEs. Comm. Math. Phys. 199, 351-395 (1998) 35. Milstein, G.N., Repin, Y.M., Tretyakov, M.V.:Numerical methods for stochastic systems preserving symplectic structure. SIAM J. Numer. Anal. 40, 1583-1604 (2002) 36. Milstein, G.N., Repin, Y.M., Tretyakov, M.V.:Symplectic integration of Hamiltonian systems with additive noise. SIAM J. Numer. Anal. 39, 2066-2088 (2002) 37. Milstein, G.N., Tretyakov, M.V.:Stochastic Numerics for Mathematical Physics. Springer, Berlin (2004) 38. Milton, G.W.:The Theory of Composites. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2004) 39. Moscoso, M.:Polarization-Based Optical Imaging. In:Bonilla, L.L. (eds.) Inverse Problems and Imaging, Lecture Notes in Mathematics, vol. 1943. Springer, Berlin (2008) 40. Da Prato, G., Zabczyk, J.:Stochastic Equations in Infinite Dimensions, 2nd edn. Cambridge University Press, Cambridge (2014) 41. Rytov, S.M., Kravtsov, Y.A., Tatarskii, V.I.:Principles of Statistical Radiophysics 3:Elements of Random Fields. Springer, Berlin (1989) 42. Roach, G.F., Stratis, I.G., Yannacopoulos, A.N.:Mathematical Analysis of Deterministic and Stochastic Problems in Complex Media Electromagnetics. Princeton Series in Applied Mathematics, Princeton University Press, Princeton (2012) 43. Skolnik, M.I.:Radar Handbook, 3rd edn. McGraw-Hill, New York (2008) 44. Süß, A., Waurick, M.:A solution theory for a general class of SPDEs:Stoch PD. Anal. Comp. 5, 278-318 (2017) 45. Wang, L.:Variational integrators and generating functions for stochastic Hamiltonian systems, Ph. D. Thesis, Universitätsverlag Karlsruhe, (2007) 46. Wang, L., Hong, J.:Generating functions for stochastic symplectic methods. Discrete Contin. Dyn. Syst. 34, 1211-1228 (2014) 47. Wang, Y., Hong, J.:Multi-symplectic algorithms for Hamiltonian partial differential equations. Commun. Appl. Math. Comput. 27, 163-230 (2013) 48. Zhang, K.:Numerical studies of some stochastic partial differential equations. Ph. D. Thesis, The Chinese University of Hong Kong, China, (2008) 49. Zhou, W., Zhang, J., Hong, J., Song, S.:Stochastic symplectic Runge-Kutta methods for the strong approximation of Hamiltonian systems with additive noise. J. Comput. Appl. Math. 325, 134-148 (2017) |