1. Ben-Artzi, M., Falcovitz, J.: A second-order Godunov-type scheme for compressible fluid dynamics. J. Comput. Phys. 55, 1-32 (1984) 2. Ben-Artzi, M., Falcovitz, J.: Generalized Riemann Problems in Computational Fluid Dynamics.Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press,Cambridge (2003) 3. Ben-Artzi, M., Li, J.Q.: Hyperbolic conservation laws: Riemann invariants and the generalized Riemann problem. Numerische Mathematik 106, 369-425 (2007) 4. Ben-Artzi, M., Li, J.Q.: Consistency of finite volume approximations to nonlinear hyperbolic balance laws. Math. Comput. 90, 141-169 (2021) 5. Ben-Artzi, M., Li, J.Q.: Regularity of fluxes in nonlinear hyperbolic balance laws. Commun. Appl.Math. Comput. 5, 1289-1298 (2023) 6. Ben-Artzi, M., Li, J.Q., Warnecke, G.: A direct Eulerian GRP scheme for compressible fluid flows.J. Comput. Phys. 218, 19-43 (2006) 7. Chen, G.Q., Comi, G.E., Torres, M.: Cauchy fluxes and Gauss-Green formulas for divergencemeasure fields over general open sets. Arch. Rat. Mech. Anal. 233, 87-166 (2019) 8. Chen, G.Q., Frid, H.: Divergence-measure fields and hyperbolic conservation laws. Arch. Rat.Mech. Anal. 147, 89-118 (1999) 9. Chen, G.Q., Torres, M., Ziemer, W.: Gauss-Green theorem for weakly differentiable vector fields,sets of finite perimeter, and balance laws. Commun. Pure Appl. Math. 62, 242-304 (2009) 10. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenschaften, 4th edn. Springer, Heidelberg (2016) 11. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998) 12. Federer, H.: Geometric Measure Theory. Springer, Heidelberg (1969) 13. Godlewski, E., Raviart, P.A.: Hyperbolic Systems of Conservation Laws. Ellipses (1991) 14. Godunov, S.K.: Finite difference methods for numerical computations of discontinuous solutions of equations of fluid dynamics. Mat. Sb. 47, 271-295 (1959) 15. Gurtin, M.E., Martins, L.C.: Cauchy’s theorem in classical physics. Arch. Rat. Mech. Anal. 60,305-324 (1976) 16. Lax, P., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217-237 (1960) 17. Lei, X., Li, J.: Transversal effects of high order numerical schemes for compressible fluid flows. Appl. Math. Mech. (Engl. Edn.) 40, 343-354 (2019) 18. Li, J., Du, Z.: A two-stage fourth order time-accurate discretization for Lax-Wendroff type flow solvers, I. Hyperbolic conservation laws. SIAM J. Sci. Comput. 38, 3045-3069 (2016) 19. Li, J., Wang, Y.: Thermodynamical effects and high resolution methods for compressible fluid flows. J. Comput. Phys. 343, 340-354 (2017) 20. Qian, J., Li, J., Wang, S.: The generalized Riemann problems for compressible fluid flows: towards high order. J. Comput. Phys. 259, 358-389 (2014) 21. Sheng, W., Zhang, Q., Zheng, Y.: A direct Eulerian GRP scheme for a blood flow model in arteries. SIAM J. Sci. Comput. 43(3), A1975-A1996 (2021) 22. Šilhavý, M.: The existence of the flux vector and the divergence theorem for general Cauchy fluxes. Arch. Rat. Mech. Anal. 90, 195-212 (1985) 23. Šilhavý, M.: Divergence-measure fields and Cauchy’s stress theorem. Rend. Sem. Mat. Padova 113, 15-45 (2005) 24. Spivak, M.: A Comprehensaive Introduction to Differential Geometry, vol. I. Publish or Perish, Inc., Houston, Texas (1979) 25. Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics: a Practical Introduction, 3rd edn. Springer, Berlin (2009) 26. Wu, K., Tang, H.: A direct Eulerian GRP scheme for spherically symmetric general relativistic hydrodynamics. SIAM J. Sci. Comput. 38(3), B458-B489 (2016) |