[1] Balsara, D.S., Altmann, C., Munz, C.-D., Dumbser, M.:A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG plus HWENO schemes. J. Comput. Phys. 226(1), 586-620 (2007) [2] Capdeville, G.:A Hermite upwind WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 227(4), 2430-2454 (2008) [3] Casper, J., Atkins, H.L.:A finite-volume high-order ENO scheme for two-dimensional hyperbolic systems. J. Comput. Phys. 106(1), 62-76 (1993) [4] Cockburn, B., Shu, C.-W.:The Runge-Kutta discontinuous Galerkin method for conservation laws V:multidimensional systems. J. Comput. Phys. 141(2), 199-224 (1998) [5] Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.-D.:A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209-8253 (2008) [6] Ha, Y., Gardner, C.L., Gelb, A., Shu, C.-W.:Numerical simulation of high Mach number astrophysical jets with radiative cooling. J. Sci. Comput. 24(1), 597-612 (2005) [7] Hu, C.Q., Shu, C.-W.:Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150(1), 97-127 (1999) [8] Hu, X.Y., Khoo, B.C.:An interface interaction method for compressible multifluids. J. Comput. Phys. 198(1), 35-64 (2004) [9] Jiang, G.-S., Peng, D.:Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126-2143 (2000) [10] Jiang, G.-S., Shu, C.-W.:Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202-228 (1995) [11] Krivodonova, L., Xin, J., Remacle, J.F., Chevaugeon, N., Flaherty, J.E.:Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48(3), 323-338 (2004) [12] Lax, P.D., Liu, X.-D.:Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19(2), 319-340 (1998) [13] Liu, H., Qiu, J.:Finite difference Hermite WENO schemes for conservation laws, II:an alternative approach. J. Sci. Comput. 66(2), 598-624 (2016) [14] Liu, X.-D., Osher, S., Chan, T.:Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200-212 (1994) [15] Liu, Y., Zhang, Y.-T.:A robust reconstruction for unstructured WENO schemes. J. Sci. Comput. 54(2/3), 603-621 (2013) [16] Luo, D., Huang, W., Qiu, J.:A hybrid LDG-HWENO scheme for KdV-type equations. J. Comput. Phys. 313, 754-774 (2016) [17] Qiu, J., Shu, C.-W.:Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method:one-dimensional case. J. Comput. Phys. 193(1), 115-135 (2004) [18] Qiu, J., Shu, C.-W.:Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II:two-dimensional case. Comput. Fluids 34(6), 642-663 (2005) [19] Shi, J., Hu, C., Shu, C.-W.:A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175(1), 108-127 (2002) [20] Shu, C.-W.:Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta. Numer. 29, 701-762 (2020) [21] Shu, C.-W., Osher, S.:Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439-471 (1988) [22] Tao, Z., Li, F., Qiu, J.:High-order central Hermite WENO schemes:dimension-by-dimension moment-based reconstructions. J. Comput. Phys. 318, 222-251 (2016) [23] Titarev, V.A., Toro, E.F.:Finite-volume WENO schemes for three-dimensional conservation laws. J. Comput. Phys. 201(1), 238-260 (2004) [24] Wang, C., Shu, C.-W., Han, W., Ning, J.:High resolution WENO simulation of 3D detonation waves. Combust. Flame 160(2), 447-462 (2013) [25] Woodward, P., Colella, P.:The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115-173 (1984) [26] Wu, K., Tang, H.:High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics. J. Comput. Phys. 298, 539-564 (2015) [27] Wu, K., Yang, Z., Tang, H.:A third-order accurate direct Eulerian GRP scheme for the Euler equations in gas dynamics. J. Comput. Phys. 264(1), 177-208 (2014) [28] Xing, Y.L., Shu, C.-W.:High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208(1), 206-227 (2005) [29] Xiong, T., Zhang, M., Zhang, Y.-T., Shu, C.-W.:Fast sweeping fifth order WENO scheme for static Hamilton-Jacobi equations with accurate boundary treatment. J. Sci. Comput. 45(1/2/3), 514-536 (2010) [30] Zhang, Y.-T., Shu, C.-W.:Third order WENO scheme on three dimensional tetrahedral meshes. Communicat. Comput. Phys. 5(2/3/4), 836-848 (2009) [31] Zhao, Z., Qiu, J.:A Hermite WENO scheme with artificial linear weights for hyperbolic conservation laws. J. Comput. Phys. 417, 109583 (2020) [32] Zheng, F., Qiu, J.:Directly solving the Hamilton-Jacobi equations by Hermite WENO schemes. J. Comput. Phys. 307, 423-445 (2016) [33] Zhu, J., Qiu, J.:A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes. Sci. China Ser. A 51(08), 1549-1560 (2008) [34] Zhu, J., Qiu, J.:A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110-121 (2016) [35] Zhu, J., Qiu, J.:A new type of finite volume WENO schemes for hyperbolic conservation laws. J. Sci. Comput. 73(2/3), 1338-1359 (2017) |