1. Ball, J.M.: A version of the fundamental theorem for young measures. In: PDEs and Continuum Models of Phase Transitions, pp. 207-215. Springer, Berlin (1989) 2. Ben-Artzi, M., Falcovitz, J., Li, J.: The convergence of the GRP scheme. Discrete Contin. Dyn. Syst. 23, 1-27 (2009) 3. Ben-Artzi, M., Li, J.: Hyperbolic balance laws: Riemann invariants and the generalized Riemann problem. Numer. Math. 106(3), 369-425 (2007) 4. Ben-Artzi, M., Li, J.: Consistency of finite volume approximations to nonlinear hyperbolic balance laws. Math. Comput. 90(327), 141-169 (2021) 5. Ben-Artzi, M., Li, J., Warnecke, G.: A direct Eulerian GRP scheme for compressible fluid flows. J. Comput. Phys. 218(1), 19-43 (2006) 6. Bressan, A., Crasta, G., Piccoli, B.: Well-Posedness of the Cauchy Problem for n×n Systems of Conservation Laws. Memoirs of the American Mathematical Society, London (2000) 7. Bressan, A., Lewicka, M.: A uniqueness condition for hyperbolic systems of conservation laws. Discrete Contin. Dyn. Syst. 6(3), 673-682 (2000) 8. Cancès, C., Mathis, H., Seguin, N.: Error estimate for time-explicit finite volume approximation of strong solutions to systems of conservation laws. SIAM J. Numer. Anal. 54(2), 1263-1287 (2016) 9. Chiodaroli, E., De Lellis, C., Kreml, O.: Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math. 68(7), 1157-1190 (2015) 10. Chiodaroli, E., Kreml, O., Mácha, V., Schwarzacher, S.: Non-uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial data. Trans. Am. Math. Soc. 374(4), 2269- 2295 (2021) 11. De Lellis, C., Székelyhidi, L., Jr.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225-260 (2010) 12. DiPerna, R.J.: Measure-valued solutions to conservation laws. Arch. Ration. Mech. Anal. 88(3), 223- 270 (1985) 13. Feireisl, E., Klingenberg, C., Kreml, O., Markfelder, S.: On oscillatory solutions to the complete Euler system. J. Differential Equations 269(2), 1521-1543 (2020) 14. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H.: Convergence of finite volume schemes for the Euler equations via dissipative measure-valued solutions. Found. Comput. Math. 20(4), 923-966 (2020) 15. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H.: A finite volume scheme for the Euler system inspired by the two velocities approach. Numer. Math. 144(1), 89-132 (2020) 16. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H., She, B.: Numerical Analysis of Compressible Flows. MS & A Series, vol. 20. Springer, Lodnon (2021) 17. Fjordholm, U.K., Käppeli, R., Mishra, S., Tadmor, E.: Construction of approximate entropy measurevalued solutions for hyperbolic systems of conservation laws. Found. Comput. Math. 17(3), 763-827 (2017) 18. Fjordholm, U.S., Mishra, S., Tadmor, E.: ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 13, 139-159 (2013) 19. Fjordholm, U.S., Mishra, S., Tadmor, E.: On the computation of measure-valued solutions. Acta Numer. 25, 567-679 (2016) 20. Jovanović, V., Rohde, Ch.: Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws. SIAM J. Numer. Anal. 43(6), 2423-2449 (2006) 21. Kröner, D., Noelle, S., Rokyta, M.: Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions. Numer. Math. 71, 527- 560 (1995) 22. Kröner, D., Rokyta, M.: Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal. 31(2), 324-343 (1994) 23. Kružkov, S.: First order quasilinear equations in several independent variables. USSR Math. Sbornik 10(2), 217-243 (1970) 24. Li, J., Du, Z.F.: A two-stage fourth order time-accurate discretization for Lax-Wendroff type flow solvers I. Hyperbolic conservation laws. SIAM J. Sci. Comput. 38(5), A3046-A3069 (2016) 25. Lukáčová-Medvid’ová, M., Yuan, Y.: Convergence of first-order finite volume method based on exact Riemann solver for the complete compressible Euler equations. Numer. Methods Partial Differential Equations 39(5), 3777-3810 (2023) 26. Lukáčová-Medvid’ová, M., She, B., Yuan, Y.: Error estimates of the Godunov method for the multidimensional compressible Euler system. J. Sci. Comput. 91(3), Paper No. 71 (2022) |