1. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004). https:// doi. org/ 10. 1137/ S1064 82750 34310 90 2. Barth, T., Jespersen, D.: The design and application of upwind schemes on unstructured meshes. In: 27th Aerospace Sciences Meeting (1989). https:// doi. org/ 10. 2514/6. 1989- 366 3. Beljadid, A., Mohammadian, A., Kurganov, A.: Well-balanced positivity preserving cell-vertex central-upwind scheme for shallow water flows. Comput. Fluids 136, 193–206 (2016). https:// doi. org/ 10. 1016/j. compfluid. 2016. 06. 005 4. Berthon, C., Foucher, F.: Efficient well-balanced hydrostatic upwind schemes for shallow-water equations. J. Comput. Phys. 231(15), 4993–5015 (2012). https:// doi. org/ 10. 1016/j. jcp. 2012. 02. 031 5. Bollermann, A., Chen, G., Kurganov, A., Noelle, S.: A well-balanced reconstruction of wet/dry fronts for the shallow water equations. J. Sci. Comput. 56, 267–290 (2013). https:// doi. org/ 10. 1007/ s10915- 012- 9677-5 6. Bollermann, A., Noelle, S., Lukacova-Medvidova, M.: Finite volume evolution Galerkin methods for the shallow water equations with dry beds. Commun. Comput. Phys. 10, 371–404 (2011). https:// doi. org/ 10. 4208/ cicp. 220210. 02071 0a 7. Bryson, S., Epshteyn, Y., Kurganov, A., Petrova, G.: Well-balanced positivity preserving centralupwind scheme on triangular grids for the Saint-Venant system. ESAIM Math. Model. Numer. Anal. 45, 423–446 (2011). https:// doi. org/ 10. 1051/ m2an/ 20100 60 8. Castro Díaz, M. J., Kurganov, A., Morales de Luna, T.: Path-conservative central-upwind schemes for nonconservative hyperbolic systems. ESAIM: M2AN 53(3), 959–985 (2019). https:// doi. org/ 10. 1051/ m2an/ 20180 77 9. Castro, M. J., Morales de Luna, T., Parés, C.: Chapter 6 - Well-balanced schemes and path-conservative numerical methods. In: Abgrall, R., Shu, C.-W. (eds) Handbook of Numerical Methods for Hyperbolic Problems: Applied and Modern Issues, Volume XVIII of Handbook of Numerical Analysis, pp. 131–175. Elsevier (2017). https:// doi. org/ 10. 1016/ bs. hna. 2016. 10. 002 10. Chertock, A., Cui, S., Kurganov, A., Wu, T.: Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms. Int. J. Numer. Methods Fluids 78, 04 (2015). https:// doi. org/ 10. 1002/ fld. 4023 11. Coon, E., Moulton, J., Painter, S.: Managing complexity in simulations of land surface and nearsurface processes. Environ. Model. Softw. 78, 134–149 (2016). https:// doi. org/ 10. 1016/j. envso ft. 2015. 12. 017 12. Fernàndez-Nieto, E., Narbona-Reina, G.: Extension of WAF type methods to non-homogeneous shallow water equations with pollutant. J. Sci. Comput. 36, 193–217 (2008). https:// doi. org/ 10.1007/ s10915- 008- 9185-9 13. Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, New York (1996). https:// doi. org/ 10. 1007/ 978-1- 4612- 0713-9 14. Jameson, A.: Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flows. In: 11th AIAA Computational Fluid Dynamics Conference (1993). https:// doi. org/ 10. 2514/6. 1993- 3359 15. Kurganov, A.: Finite-volume schemes for shallow-water equations. Acta Numer. 27, 289–351 (2018). https:// doi. org/ 10. 1017/ S0962 49291 80000 28 16. Kurganov, A., Levy, D.: Central-upwind schemes for the Saint-Venant system. Math. Model. Numer. Anal. 36, 397–425 (2002). https:// doi. org/ 10. 1051/ m2an: 20020 19 17. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5, 03 (2007). https:// doi. org/ 10. 4310/ CMS. 2007. v5. n1. a6 18. Kuzmin, D.: A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods. J. Comput. Appl. Math. 233(12), 3077–3085 (2010). https:// doi. org/ 10. 1016/j. cam. 2009. 05.028 19. Kuzmin, D., Lohner, R., Turek, S.: Flux-Corrected Transport: Principles, Algorithms, and Applications. Springer, Berlin, Heidelberg (2005). https:// doi. org/ 10. 1007/ b1387 54 20. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press (2002). https:// doi. org/ 10. 1017/ CBO97 80511 791253 21. Liu, X.: A well-balanced and positivity-preserving numerical model for shallow water flows in channels with wet-dry fronts. J. Sci. Comput. 85, 60 (2020). https:// doi. org/ 10. 1007/s10915- 020- 01362-2 22. Liu, X., Albright, J., Epshteyn, Y., Kurganov, A.: Well-balanced positivity preserving centralupwind scheme with a novel wet/dry reconstruction on triangular grids for the Saint-Venant system. J. Comput. Phys. 374, 213–236 (2018). https:// doi. org/ 10. 1016/j. jcp. 2018. 07. 038 23. Macián-Pérez, J.F., García-Bartual, R., Huber, B., Bayon, A., Vallés-Morán, F.J.: Analysis of the flow in a typified USBR II stilling basin through a numerical and physical modeling approach. Water 12(1), 227 (2020). https:// doi. org/ 10. 3390/ w1201 0227 24. Noelle, S., Pankratz, N., Puppo, G., Natvig, J.R.: Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213(2), 474–499 (2006). https:// doi. org/ 10. 1016/j. jcp. 2005. 08. 019 25. Ricchiuto, M., Abgrall, R., Deconinck, H.: Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes. J. Comput. Phys. 222(1), 287–331 (2007). https:// doi. org/ 10. 1016/j. jcp. 2006. 06. 024 26. Ricchiuto, M., Bollermann, A.: Stabilized residual distribution for shallow water simulations. J. Comput. Phys. 228, 1071–1115 (2009). https:// doi. org/ 10. 1016/j. jcp. 2008. 10. 020 27. Rusanov, V.V.: The calculation of the interaction of non-stationary shock waves and obstacles. USSR Comput. Math. Math. Phys. 1(2), 304–320 (1962). https:// doi. org/ 10. 1016/ 0041- 5553(62) 90062-9 28. Shirkhani, H., Mohammadian, A., Seidou, O., Kurganov, A.: A well-balanced positivity-preserving central-upwind scheme for shallow water equations on unstructured quadrilateral grids. Comput. Fluids 126, 25–40 (2016). https:// doi. org/ 10. 1016/j. compfluid. 2015. 11. 017 29. Thacker, W.C.: Some exact solutions to the nonlinear shallow-water wave equations. J. Fluid Mech. 107, 499–508 (1981). https:// doi. org/ 10. 1017/ S0022 11208 10018 82 30. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin, Heidelberg (2009). https:// doi. org/ 10. 1007/ b79761 31. Wainwright, H., Faybishenko, B., Molins, S., Davis, J., Arora, B., Pau, G., Flach, G., Denham, M., Eddy-Dilek, C., Moulton, D., Lipnikov, K., Gable, C., Miller, T., Barker, E., Freedman, V., Johnson, J.N., Freshley, M.: Effective long-term monitoring strategies by integrating reactive transport models with in situ geochemical measurements. In: Proceeding of WM2016 Conf. March 6–10, 2016 Phoenix, AZ (2016) 32. Xing, Y., Shu, C.-W.: High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208(1), 206–227 (2005). https:// doi. org/ 10.1016/j. jcp. 2005. 02. 006 33. Xing, Y., Shu, C.-W.: A survey of high order schemes for the shallow water equations. J. Math. Study 47(3), 221–249 (2014). https:// doi. org/ 10. 4208/ jms. v47n3. 14. 01 34. Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33(12), 1476–1493 (2010). https:// doi. org/ 10. 1016/j. advwa tres. 2010. 08. 005 |