[1] Albuquerque-Ferreira, A.C., Ribeiro, P.M.V.: Reduced-order strategy for meshless solution of plate bending problems with the generalized finite difference method. Latin American Journal of Solids and Structures 16(01), 1-21 (2019). https://doi.org/10.1590/1679-78255191 [2] Bucur, C., Valdinoci, E.: Nonlocal diffusion and applications. In: Lecture Notes of the Unione Matematica Italiana. Springer, Cham (2016) [3] Caputo, M.C., Torres, D.F.M.: Duality for the left and right fractional derivatives. Signal Process. 107, 265-271 (2015) [4] Cheng, J.: On multivariate fractional Taylor’s and Cauchy’s mean value theorem. J. Math. Study 52, 38-52 (2019) [5] Collatz, L.: The Numerical Treatment of Differential Equations. Springer-Verlag, Berlin (1960) [6] Daoud, M., Laamri, E.H.: Fractional Laplacians: a short survey. Discrete Contin. Dyn. Syst. Ser. 15(1), 95-116 (2022). https://doi.org/10.3934/dcdss.2021027 [7] D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66(7), 1245-1260 (2013) [8] Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Y.: Algorithms for the fractional calculus: a selection of numerical methods. Computational Methods in Applied Mechanics and Engineering 194(6), 743-773 (2005) [9] Ding, Z., Xiao, A., Li, M.: Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients. J. Comput. Appl. Math. 233, 1905-1914 (2010) [10] Forsythe, G.E., Wasow, W.R.: Finite Difference Methods for Partial Differential Equations. Wiley, New York (1960) [11] García, A., Negreanu, M., Ureña, F., Vargas, A.M.: A note on a meshless method for fractional Laplacian at arbitrary irregular meshes. Mathematics 9(9), 2843 (2021). https://doi.org/10.3390/math9222843 [12] Gavete, L., Ureña, F., Benito, J.J., García, A., Ureña, M., Salete, E.: Solving second order non-linear elliptic partial differential equations using generalized finite difference method. J. Comput. Appl. Math. 318, 378-387 (2017) [13] Hu, Y., Li, C., Li, H.: The finite difference method for Caputo-type parabolic equation with fractional Laplacian: one-dimension case. Chaos, Solitons & Fractals 102, 319-326 (2017) [14] Huang, Y., Oberman, A.M.: Numerical methods for the fractional Laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52(6), 3056-3084 (2013) [15] Jensen, P.S.: Finite difference technique for variable grids. Comput. Struct. 2, 17-29 (1972) [16] Lancaster, P., Salkauskas, K.: Curve and Surface Fitting. Academic Press, New York (1986) [17] Levin, D.: The approximation power of moving least squares. Math. Comput. 67(224), 1517-1531 (1998) [18] Liszka, T., Orkisz, J.: The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput. Struct. 11, 83-95 (1980) [19] Nochetto, R.H., Otarola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733-791 (2015) [20] Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186, 286-293 (2019) [21] Perrone, N., Kao, R.: A general finite difference method for arbitrary meshes. Comput. Struct. 5, 45-58 (1975) [22] Del Teso, F.: Finite difference method for a fractional porous medium equation. Calcolo 51, 615-638 (2014) [23] Ureña, F., Gavete, L., García, A., Benito, J.J., Vargas, A.M.: Non-linear Fokker-Planck equation solved with generalized finite differences in 2D and 3D. Appl. Math. Comput. 368, 124801 (2020) [24] Usero, D.: Fractional Taylor Series for Caputo Fractional Derivatives. Construction of Numerical Schemes. Universidad Complutense de Madrid, Spain, Department of Applied Mathematics (2008) [25] Vargas, A.M.: Finite difference method for solving fractional differential equations at irregular meshes. Math. Comput. Simul. 193, 204-216 (2022) [26] Vázquez, J.L.: Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete Contin. Dyn. Syst. Ser. S 7(4), 857-885 (2014) [27] Vázquez, J.L.: The Mathematical Theories of Diffusion. Nonlinear and Fractional Diffusion. Springer Lecture Notes in Mathematics, CIME Subseries (2017) [28] Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34(1), 200-218 (2010) |