Communications on Applied Mathematics and Computation ›› 2021, Vol. 3 ›› Issue (4): 607-647.doi: 10.1007/s42967-020-00077-3
F. L. Romeo, M. Dumbser, M. Tavelli
收稿日期:
2019-12-31
修回日期:
2020-03-14
出版日期:
2021-11-20
发布日期:
2021-11-25
通讯作者:
M. Dumbser, F. L. Romeo, M. Tavelli
E-mail:michael.dumbser@unitn.it;francesco.romeo-4@unitn.it;m.tavelli@unitn.it
F. L. Romeo, M. Dumbser, M. Tavelli
Received:
2019-12-31
Revised:
2020-03-14
Online:
2021-11-20
Published:
2021-11-25
Contact:
M. Dumbser, F. L. Romeo, M. Tavelli
E-mail:michael.dumbser@unitn.it;francesco.romeo-4@unitn.it;m.tavelli@unitn.it
摘要: A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin (DG) method is presented for the simulation of viscous incompressible fows on unstructured triangular grids in two space dimensions. The staggered DG scheme defnes the discrete pressure on the primal triangular mesh, while the discrete velocity is defned on a staggered edge-based dual quadrilateral mesh. In this paper, a new pair of equal-order-interpolation velocity-pressure fnite elements is proposed. On the primary triangular mesh (the pressure elements), the basis functions are piecewise polynomials of degree N and are allowed to jump on the boundaries of each triangle. On the dual mesh instead (the velocity elements), the basis functions consist in the union of piecewise polynomials of degree N on the two subtriangles that compose each quadrilateral and are allowed to jump only on the dual element boundaries, while they are continuous inside. In other words, the basis functions on the dual mesh are built by continuous fnite elements on the subtriangles. This choice allows the construction of an efcient, quadraturefree and memory saving algorithm. In our coupled space-time pressure correction formulation for the incompressible Navier-Stokes equations, the arbitrary high order of accuracy in time is achieved through the use of time-dependent test and basis functions, in combination with simple and efcient Picard iterations. Several numerical tests on classical benchmarks confrm that the proposed method outperforms existing staggered semi-implicit space-time DG schemes, not only from a computer memory point of view, but also concerning the computational time.
中图分类号:
F. L. Romeo, M. Dumbser, M. Tavelli. A Novel Staggered Semi-implicit Space-Time Discontinuous Galerkin Method for the Incompressible Navier-Stokes Equations[J]. Communications on Applied Mathematics and Computation, 2021, 3(4): 607-647.
F. L. Romeo, M. Dumbser, M. Tavelli. A Novel Staggered Semi-implicit Space-Time Discontinuous Galerkin Method for the Incompressible Navier-Stokes Equations[J]. Communications on Applied Mathematics and Computation, 2021, 3(4): 607-647.
1. Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: On a robust discontinuous Galerkin technique for the solution of compressible fow. J. Comput. Phys. 218, 208–221 (2006) 2. Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible fows. Comput. Fluids 36, 1529–1546 (2007) 3. Bassi, F., Rebay, S.: A high-order accurate discontinuous fnite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279 (1997) 4. Baumann, C.E., Oden, J.T.: A discontinuous hp fnite element method for the Euler and Navier-Stokes equations. Int. J. Numer. Meth. Fl. 31(1), 79–95 (1999) 5. Bell, J.B., Coletta, P., Glaz, H.M.: A second-order projection method for the incompressible NavierStokes equations. J. Comput. Phys. 85, 257–283 (1989) 6. Benson, D.J.: Momentum advection on a staggered mesh. J. Comput. Phys. 100(1), 143–162 (1992) 7. Bermudez, A., Dervieux, A., Desideri, J.A., Vazquez, M.E.: Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Comput. Method. Appl. Methods 155, 49–72 (1998) 8. Bermúdez, A., Ferrín, J.L., Saavedra, L., Vázquez-Cendón, M.E.: A projection hybrid fnite volume/element method for low-Mach number fows. J. Comput. Phys. 271, 360–378 (2014) 9. Berndt, M., Breil, J., Galera, S., Kucharik, M., Maire, P.H., Shashkov, M.: Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods. J. Comput. Phys. 230, 6664–6687 (2011) 10. Blasius, H.: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Angew. Math. Phys. 56, 1–37 (1908) 11. Bochev, P., Ridzal, D., Shashkov, M.J.: Fast optimization-based conservative remap of scalar felds through aggregate mass transfer. J. Comput. Phys. 246, 37–57 (2013) 12. Boscarino, S., Filbet, F., Russo, G.: High order semi-implicit schemes for time dependent partial diferential equations. J. Sci. Comput. 68, 975–1001 (2016) 13. Boscarino, S., LeFloch, P.G., Russo, G.: High-order asymptotic-preserving methods for fully nonlinear relaxation problems. SIAM J. Sci. Comput. 36, A377–A395 (2014) 14. Boscarino, S., Russo, G., Scandurra, L.: All Mach number second order semi-implicit scheme for the Euler equations of gas dynamics. J. Sci. Comput. 77, 850–884 (2018) 15. Boscheri, W.: An efcient high order direct ALE ADER fnite volume scheme with a posteriori limiting for hydrodynamics and magnetohydrodynamics. Int. J. Numer. Meth. Fluids 84, 76–106 (2017) 16. Boscheri, W., Balsara, D.S., Dumbser, M.: Lagrangian ADER-WENO fnite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers. J. Comput. Phys. 267, 112–138 (2014) 17. Boscheri, W., Dumbser, M.: Arbitrary-Lagrangian-Eulerian one-step WENO fnite volume schemes on unstructured triangular meshes. Commun. Comput. Phys. 14, 1174–1206 (2013) 18. Boscheri, W., Dumbser, M.: A direct Arbitrary-Lagrangian-Eulerian ADER-WENO fnite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D. J. Comput. Phys. 275, 484–523 (2014) 19. Boscheri, W., Dumbser, M.: An efcient quadrature-free formulation for high order arbitraryLagrangian-Eulerian ADER-WENO fnite volume schemes on unstructured meshes. J. Sci. Comput. 66, 240–274 (2016) 20. Boscheri, W., Dumbser, M.: Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell fnite volume limiting on moving unstructured meshes. J. Comput. Phys. 346, 449–479 (2017) 21. Boscheri, W., Dumbser, M., Balsara, D.S.: High-order ADER-WENO ALE schemes on unstructured triangular meshes-application of several node solvers to hydrodynamics and magnetohydrodynamics. Int. J. Numer. Meth. Fluids 76, 737–778 (2014) 22. Boscheri, W., Dumbser, M., Zanotti, O.: High order cell-centered Lagrangian-type fnite volume schemes with time-accurate local time stepping on unstructured triangular meshes. J. Comput. Phys. 291, 120–150 (2014) 23. Boscheri, W., Loubère, R.: High order accurate direct Arbitrary-Lagrangian-Eulerian ADERMOOD fnite volume schemes for non-conservative hyperbolic systems with stif source terms. Commun. Comput. Phys. 21, 271–312 (2017) 24. Boscheri, W., Loubère, R., Dumbser, M.: Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD fnite volume schemes for multidimensional hyperbolic conservation laws. J. Comput. Phys. 292, 56–87 (2015) 25. Breil, J., Harribey, T., Maire, P.H., Shashkov, M.J.: A multi-material ReALE method with MOF interface reconstruction. Comput. Fluids 83, 115–125 (2013) 26. Brooks, A.N., Hughes, T.J.R.: Stream-line upwind/Petrov Galerkin formulation for convection dominated fows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Method. Appl. Mech. Engrg. 32, 199–259 (1982) 27. Brugnano, L., Casulli, V.: Iterative solution of piecewise linear systems. SIAM J. Sci. Comput. 30, 463–472 (2007) 28. Brugnano, L., Casulli, V.: Iterative solution of piecewise linear systems and applications to fows in porous media. SIAM J. Sci. Comput. 31, 1858–1873 (2009) 29. Brugnano, L., Sestini, A.: Iterative solution of piecewise linear systems for the numerical solution of obstacle problems. J. Numer. Anal. Ind. Appl. Math. 6, 67–82 (2012) 30. Caramana, E.J., Burton, D.E., Shashkov, M.J., Whalen, P.P.: The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. J. Comput. Phys. 146, 227–262 (1998) 31. Carré, G., Del Pino, S., Després, B., Labourasse, E.: A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension. J. Comput. Phys. 228, 5160–5183 (2009) 32. Casulli, V.: A high-resolution wetting and drying algorithm for free-surface hydrodynamics. Int. J. Numer. Meth. Fluids 60, 391–408 (2009) 33. Casulli, V.: A semi-implicit numerical method for the free-surface Navier-Stokes equations. Int. J. Numer. Meth. Fluids 74, 605–622 (2014) 34. Casulli, V., Cattani, E.: Stability, accuracy and efciency of a semi-implicit method for threedimensional shallow water fow. Comput. Math. Appl. 27, 99–112 (1994) 35. Casulli, V., Cheng, R.T.: Semi-implicit fnite diference methods for three-dimensional shallow water fow. Int. J. Numer. Meth. Fluids 15, 629–648 (1992) 36. Casulli, V., Dumbser, M., Toro, E.F.: Semi-implicit numerical modeling of axially symmetric fows in compliant arterial systems. Int. J. Numer. Meth. Biol. 28, 257–272 (2012) 37. Casulli, V., Greenspan, D.: Pressure method for the numerical solution of transient, compressible fuid fow. Int. J. Numer. Meth. Fluids 4, 1001–1012 (1984) 38. Casulli, V., Stelling, G.S.: Semi-implicit subgrid modelling of three-dimensional free-surface fows. Int. J. Numer. Meth. Fluids 67, 441–449 (2011) 39. Casulli, V., Walters, R.A.: An unstructured grid, three-dimensional model based on the shallow water equations. Int. J. Numer. Meth. Fluids 32, 331–348 (2000) 40. Casulli, V., Zanolli, P.: Iterative solutions of mildly nonlinear systems. J. Comput. Appl. Math. 236, 3937–3947 (2012). https://doi.org/10.1016/j.cam.2012.02.042 41. Cesenek, J., Feistauer, M., Horacek, J., Kucera, V., Prokopova, J.: Simulation of compressible viscous fow in time-dependent domains. Appl. Math. Comput. 219, 7139–7150 (2013) 42. Chorin, A.J.: A numerical method for solving incompressible viscous fow problems. J. Comput. Phys. 2, 12–26 (1967) 43. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 23, 341–354 (1968) 44. Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for wave propagation. SIAM J. Numer. Anal. 44, 2131–2158 (2006) 45. Chung, E.T., Lee, C.S.: A staggered discontinuous Galerkin method for the convection-difusion equation. J. Numer. Math. 20, 1–31 (2012) 46. Cockburn, B., Hou, S., Shu, C.W.: The Runge-Kutta local projection discontinuous Galerkin fnite element method for conservation laws IV. The multidimensional case. Math. Comput. 54, 545–581 (1990) 47. Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin fnite element method for conservation laws Ⅲ: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989) 48. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convectiondifusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998) 49. Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin fnite element method for conservation laws Ⅱ. General framework. Math. Comput. 52, 411–435 (1989) 50. Cockburn, B., Shu, C.W.: The Runge-Kutta local projection P1-discontinuous Galerkin fnite element method for scalar conservation laws. ESAIM Math. Model. Num. 25, 337–361 (1991) 51. Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998) 52. Cockburn, B., Shu, C.W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001) 53. Cordier, F., Degond, P., Kumbaro, A.: An asymptotic-preserving all-speed scheme for the Euler and Navier-Stokes equations. J. Comput. Phys. 231, 5685–5704 (2012) 54. Crivellini, A., D’Alessandro, V., Bassi, F.: High-order discontinuous Galerkin solutions of threedimensional incompressible RANS equations. Comput. Fluids 81, 122–133 (2013) 55. Dolejsi, V.: Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible fows. Commun. Comput. Phys. 4, 231–274 (2008) 56. Dolejsi, V., Feistauer, M.: A semi-implicit discontinuous Galerkin fnite element method for the numerical solution of inviscid compressible fow. J. Comput. Phys. 198, 727–746 (2004) 57. Dolejsi, V., Feistauer, M., Hozman, J.: Analysis of semi-implicit DGFEM for nonlinear convectiondifusion problems on nonconforming meshes. Comput. Method. Appl. Mech. Engrg. 196, 2813– 2827 (2007) 58. Dubcova, L., Feistauer, M., Horacek, J., Svacek, P.: Numerical simulation of interaction between turbulent fow and a vibrating airfoil. Comput. Vis. Sci. 12, 207–225 (2009) 59. Dumbser, M.: Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier-Stokes equations. Comput. Fluids 39, 60–76 (2010) 60. Dumbser, M.: Arbitrary-Lagrangian-Eulerian ADER-WENO fnite volume schemes with time-accurate local time stepping for hyperbolic conservation laws. Comput. Method. Appl. Mech. Engrg. 280, 57–83 (2014) 61. Dumbser, M., Balsara, D., Toro, E.F., Munz, C.D.: A unifed framework for the construction of onestep fnite-volume and discontinuous Galerkin schemes. J. Comput. Phys. 227, 8209–8253 (2008) 62. Dumbser, M., Casulli, V.: A staggered semi-implicit spectral discontinuous Galerkin scheme for the shallow water equations. Appl. Math. Comput. 219(15), 8057–8077 (2013) 63. Dumbser, M., Casulli, V.: A conservative, weakly nonlinear semi-implicit fnite volume scheme for the compressible Navier-Stokes equations with general equation of state. Appl. Math. Comput. 272, 479–497 (2016) 64. Dumbser, M., Hidalgo, A., Castro, M., Parés, C., Toro, E.F.: FORCE schemes on unstructured meshes Ⅱ: non-conservative hyperbolic systems. Comput. Method. Appl. Mech. Engrg. 199, 625– 647 (2010) 65. Dumbser, M., Iben, U., Ioriatti, M.: An efcient semi-implicit fnite volume method for axially symmetric compressible fows in compliant tubes. Appl. Numer. Math. 89, 24–44 (2015) 66. Dumbser, M., Uuriintsetseg, A., Zanotti, O.: On Arbitrary-Lagrangian-Eulerian one-step WENO schemes for stif hyperbolic balance laws. Commun. Comput. Phys. 14, 301–327 (2013) 67. Ern, A., Guermond, J.-L.: Theroy and Practice of Finite Elements. Springer-Verlag, New York (2004) 68. Fambri, F., Dumbser, M.: Spectral semi-implicit and space-time discontinuous Galerkin methods for the incompressible Navier-Stokes equations on staggered Cartesian grids. Appl. Numer. Math. 110, 41–74 (2016) 69. Fambri, F., Dumbser, M., Casulli, V.: An efcient semi-implicit method for three-dimensional nonhydrostatic fows in compliant arterial vessels. Int. J. Numer. Meth. Biol. 30, 1170–1198 (2014) 70. Feistauer, M., Horacek, J., Ruzicka, M., Svacek, P.: Numerical analysis of fow-induced nonlinear vibrations of an airfoil with three degrees of freedom. Comput. Fluids 49, 110–127 (2011) 71. Feistauer, M., Kucera, V., Prokopova, J., Horacek, J.: The ALE discontinuous Galerkin method for the simulatio of air fow through pulsating human vocal folds. AIP Conf. Proc. 1281, 83–86 (2010) 72. Ferrer, E., Willden, R.H.J.: A high order discontinuous Galerkin fnite element solver for the incompressible Navier-Stokes equations. Comput. Fluids 46, 224–230 (2011) 73. Fortin, M.: Old and new fnite elements for incompressible fows. Int. J. Numer. Meth. Fluids 1, 347–364 (1981) 74. Francois, M.M., Shashkov, M.J., Masser, T.O., Dendy, E.D.: A comparative study of multimaterial Lagrangian and Eulerian methods with pressure relaxation. Comput. Fluids 83, 126–136 (2013) 75. Gassner, G., Lörcher, F., Munz, C.D.: A contribution to the construction of difusion fuxes for fnite volume and discontinuous Galerkin schemes. J. Comput. Phys. 224, 1049–1063 (2007) 76. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible fow using the NavierStokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982) 77. Giraldo, F.X., Restelli, M.: High-order semi-implicit time-integrators for a triangular discontinuous Galerkin oceanic shallow water model. Int. J. Numer. Meth. Fluids 63, 1077–1102 (2010) 78. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible fow of fuid with a free surface. Phys. Fluids 8, 2182–2189 (1965) 79. Hartmann, R., Houston, P.: Symmetric interior penalty DG methods for the compressible NavierStokes equations I: method formulation. Int. J. Numer. Anal. Mod. 3, 1–20 (2006) 80. Hartmann, R., Houston, P.: An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations. J. Comput. Phys. 227, 9670–9685 (2008) 81. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982) 82. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem. Ⅲ. Smoothing property and higher order error estimates for spatial discretization. SIAM J. Numer. Anal. 25, 489–512 (1988) 83. Hidalgo, A., Dumbser, M.: ADER schemes for nonlinear systems of stif advection-difusion-reaction equations. J. Sci. Comput. 48, 173–189 (2011) 84. Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary Lagrangian-Eulerian computing method for all fow speeds. J. Comput. Phys. 14, 227–253 (1974) 85. Hirt, C.W., Nichols, B.D.: Volume of fuid (VOF) method for dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981) 86. Hughes, T.J.R., Mallet, M., Mizukami, M.: A new fnite element formulation for computational fuid dynamics: Ⅱ. Beyond SUPG. Comput. Method. Appl. Mech. Engrg. 54, 341–355 (1986) 87. Klaij, C., Van der Vegt, J.J.W., Van der Ven, H.: Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations. J. Comput. Phys. 217, 589–611 (2006) 88. Klein, B., Kummer, F., Oberlack, M.: A SIMPLE based discontinuous Galerkin solver for steady incompressible fows. J. Comput. Phys. 237, 235–250 (2013) 89. Klein, R.: Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics I: one-dimensional fow. J. Comput. Phys. 121, 213–237 (1995) 90. Klingenberg, C., Schnucke, G., Xia, Y.: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws: analysis and application in one dimension. Math. Comput. 86(305), 1203–1232 (2017) 91. Kucharik, M., Breil, J., Galera, S., Maire, P.H., Berndt, M., Shashkov, M.J.: Hybrid remap for multi-material ALE. Comput. Fluids 46, 293–297 (2011) 92. Kucharik, M., Shashkov, M.J.: One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian-Eulerian methods. J. Comput. Phys. 231, 2851–2864 (2012) 93. Liska, R., Shashkov, M.J., Váchal, P., Wendrof, B.: Synchronized fux corrected remapping for ALE methods. Comput. Fluids 46, 312–317 (2011) 94. Liu, Y.J., Shu, C.W., Tadmor, E., Zhang, M.: Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction. SIAM J. Numer. Anal. 45, 2442–2467 (2007) 95. Liu, Y.J., Shu, C.W., Tadmor, E., Zhang, M.: L2 stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods. ESAIM-Math. Model. Num. 42, 593–607 (2008) 96. Maire, P.H., Abgrall, R., Breil, J., Ovadia, J.: A cell-centered Lagrangian scheme for two-dimensional compressible fow problems. SIAM J. Sci. Comput. 29, 1781–1824 (2007) 97. Munz, C.D.: On Godunov-type schemes for Lagrangian gas dynamics. SIAM J. Numer. Anal. 31, 17–42 (1994) 98. Munz, C.D., Roller, S., Klein, R., Geratz, K.J.: The extension of incompressible fow solvers to the weakly compressible regime. Comput. Fluids 32, 173–196 (2003) 99. Von Neumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232–237 (1950) 100. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 230, 1147–1170 (2011) 101. Park, J.H., Munz, C.-D.: Multiple pressure variables methods for fuid fow at all Mach numbers. Int. J. Numer. Meth. Fluids 49(8), 905–931 (2005) 102. Patankar, S.: Numerical Heat Transfer and Fluid Flow. CRC Press, Boca Roton (1980) 103. Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic fows. Int. J. Heat Mass Transfer. 15, 1787–1806 (1972) 104. Peery, J.S., Carroll, D.E.: Multi-material ALE methods in unstructured grids. Comput. Methods Appl. Mech. Engrg. 187, 591–619 (2000) 105. Reed, W.H., Hill, T.R.: Triangular mesh methods for neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientifc Laboratory, (1973) 106. Rhebergen, S., Cockburn, B.: A space-time hybridizable discontinuous Galerkin method for incompressible fows on deforming domains. J. Comput. Phys. 231, 4185–4204 (2012) 107. Rhebergen, S., Cockburn, B., van der Vegt, J.J.W.: A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 233, 339–358 (2013) 108. Rusanov, V.V.: Calculation of interaction of non-steady shock waves with obstacles. J. Comput. Math. Phys. USSR 1, 267–279 (1961) 109. Rusanov, V.V.: The calculation of the interaction of non-stationary shock waves and obstacles. USSR Comput. Math. Math. Phys. 1, 304–320 (1962) 110. Sambasivan, S.K., Shashkov, M.J., Burton, D.E.: A fnite volume cell-centered Lagrangian hydrodynamics approach for solids in general unstructured grids. Int. J. Numer. Meth. Fluids 72, 770–810 (2013) 111. Sambasivan, S.K., Shashkov, M.J., Burton, D.E.: Exploration of new limiter schemes for stress tensors in Lagrangian and ALE hydrocodes. Comput. Fluids 83, 98–114 (2013) 112. Shahbazi, K., Fischer, P.F., Ethier, C.R.: A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations. J. Comput. Phys. 222, 391–407 (2007) 113. Smith, R.W.: AUSM (ALE): a geometrically conservative arbitrary Lagrangian-Eulerian fux splitting scheme. J. Comput. Phys. 150, 268–286 (1999) 114. Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall Inc., Englewood Clifs (1971) 115. Tavelli, M., Dumbser, M.: A high order semi-implicit discontinuous Galerkin method for the two dimensional shallow water equations on staggered unstructured meshes. Appl. Math. Comput. 234, 623–644 (2014) 116. Tavelli, M., Dumbser, M.: A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier-Stokes equations. Appl. Math. Comput. 248, 70–92 (2014) 117. Tavelli, M., Dumbser, M.: A staggered space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations on two-dimensional triangular meshes. Comput. Fluids 119, 235– 249 (2015) 118. Tavelli, M., Dumbser, M.: A staggered space-time discontinuous Galerkin method for the threedimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes. J. Comput. Phys. 319, 294–323 (2016) 119. Tavelli, M., Dumbser, M.: A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers. J. Comput. Phys. 341, 341–376 (2017) 120. Tavelli, M., Dumbser, M.: Arbitrary high order accurate space-time discontinuous Galerkin fnite element schemes on staggered unstructured meshes for linear elasticity. J. Comput. Phys. 366, 386–414 (2018) 121. Taylor, C., Hood, P.: A numerical solution of the Navier-Stokes equations using the fnite element technique. Comput. Fluids 1, 73–100 (1973) 122. Taylor, G.I., Green, A.E.: Mechanism of the production of small eddies from large ones. Proc. Roy. Soc. A Math. Phys. 158, 499–521 (1937) 123. Toro, E.F., Hidalgo, A., Dumbser, M.: FORCE schemes on unstructured meshes I: conservative hyperbolic systems. J. Comput. Phys. 228, 3368–3389 (2009) 124. Tumolo, G., Bonaventura, L., Restelli, M.: A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the shallow water equations. J. Comput. Phys. 232, 46–67 (2013) 125. Van der Vegt, J.J.W., van der Ven, H.: Space-time discontinuous Galerkin fnite element method with dynamic grid motion for inviscid compressible fows: I. General formulation. J. Comput. Phys. 182, 546–585 (2002) 126. Van der Ven, H., van der Vegt, J.J.W.: Space-time discontinuous Galerkin fnite element method with dynamic grid motion for inviscid compressible fows: Ⅱ. Efcient fux quadrature. Comput. Method. Appl. Mech. Engrg. 191, 4747–4780 (2002) 127. Van Kan, J.: A second-order accurate pressure correction method for viscous incompressible fow. SIAM J. Sci. Stat. Comput. 7, 870–891 (1986) 128. Verfürth, R.: Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition Ⅱ. Numer. Math. 59, 615–636 (1991) 129. Yan, J., Shu, C.W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40, 769–791 (2002) 130. Yanilkin, Y.V., Goncharov, E.A., Kolobyanin, V.Y., Sadchikov, V.V., Kamm, J.R., Shashkov, M.J., Rider, W.J.: Multi-material pressure relaxation methods for Lagrangian hydrodynamics. Comput. Fluids 83, 137–143 (2013) |
[1] | Oleksii Beznosov, Daniel Appel?. Hermite-Discontinuous Galerkin Overset Grid Methods for the Scalar Wave Equation[J]. Communications on Applied Mathematics and Computation, 2021, 3(3): 391-418. |
[2] | Mehdi Samiee, Ehsan Kharazmi, Mark M. Meerschaert, Mohsen Zayernouri. A Unified Petrov–Galerkin Spectral Method and Fast Solver for Distributed-Order Partial Differential Equations[J]. Communications on Applied Mathematics and Computation, 2021, 3(1): 61-90. |
[3] | Jayesh Badwaik, Praveen Chandrashekar, Christian Klingenberg. Single-Step Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Method for 1-D Euler Equations[J]. Communications on Applied Mathematics and Computation, 2020, 2(4): 541-579. |
[4] | Min Zhang, Yang Liu, Hong Li. High-Order Local Discontinuous Galerkin Algorithm with Time Second-Order Schemes for the Two-Dimensional Nonlinear Fractional Difusion Equation[J]. Communications on Applied Mathematics and Computation, 2020, 2(4): 613-640. |
[5] | Somayeh Yeganeh, Reza Mokhtari, Jan S. Hesthaven. A Local Discontinuous Galerkin Method for Two-Dimensional Time Fractional Difusion Equations[J]. Communications on Applied Mathematics and Computation, 2020, 2(4): 689-709. |
[6] | Rémi Abgrall. The Notion of Conservation for Residual Distribution Schemes (or Fluctuation Splitting Schemes), with Some Applications[J]. Communications on Applied Mathematics and Computation, 2020, 2(3): 341-368. |
[7] | Daniel J. Frean, Jennifer K. Ryan. Superconvergence and the Numerical Flux: a Study Using the Upwind-Biased Flux in Discontinuous Galerkin Methods[J]. Communications on Applied Mathematics and Computation, 2020, 2(3): 461-486. |
[8] | Bangti Jin, Zhi Zhou. Multigrid Methods for Time-Fractional Evolution Equations: A Numerical Study[J]. Communications on Applied Mathematics and Computation, 2020, 2(2): 163-177. |
[9] | Yonggui Yan, Jiwei Zhang, Chunxiong Zheng. Numerical Computations of Nonlocal Schrödinger Equations on the Real Line[J]. Communications on Applied Mathematics and Computation, 2020, 2(2): 241-260. |
[10] | Qiang Du, Lili Ju, Jianfang Lu, Xiaochuan Tian. A Discontinuous Galerkin Method with Penalty for One-Dimensional Nonlocal Difusion Problems[J]. Communications on Applied Mathematics and Computation, 2020, 2(1): 31-55. |
[11] | Can Li, Shuming Liu. Local Discontinuous Galerkin Scheme for Space Fractional Allen-Cahn Equation[J]. Communications on Applied Mathematics and Computation, 2020, 2(1): 73-91. |
[12] | Yong Liu, Chi-Wang Shu, Mengping Zhang. Superconvergence of Energy-Conserving Discontinuous Galerkin Methods for Linear Hyperbolic Equations[J]. Communications on Applied Mathematics and Computation, 2019, 1(1): 101-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||