On Error-Based Step Size Control for Discontinuous Galerkin Methods for Compressible Fluid Dynamics

Expand
  • 1 Applied Mathematics, University of Hamburg, Bundesstr. 55, 20146 Hamburg, Germany;
    2 Department of Mathematics;Applied Mathematics, Linköping University, Linköping, Sweden;
    3 Extreme Computing Research Center (ECRC), Computer Electrical and Mathematical Science and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
    4 Applied and Computational Mathematics, RWTH Aachen University, Aachen, Germany;
    5 High-Performance Computing Center Stuttgart, University of Stuttgart, Stuttgart, Germany;
    6 Department of Mathematics and Computer Science, University of Cologne, Cologne, Germany;
    7 Center for Data and Simulation Science, University of Cologne, Cologne, Germany;
    8 Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Received date: 2022-09-15

  Revised date: 2023-02-02

  Accepted date: 2023-02-15

  Online published: 2025-04-21

Supported by

Open Access funding enabled and organized by Projekt DEAL. Andrew Winters was funded through Vetenskapsrådet, Sweden Grant Agreement 2020-03642 VR. Some computations were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at Tetralith, partially funded by the Swedish Research Council under Grant Agreement No. 2018-05973. Hugo Guillermo Castro was funded through the award P2021-0004 of King Abdullah University of Science and Technology. Some of the simulations were enabled by the Supercomputing Laboratory and the Extreme Computing Research Center at King Abdullah University of Science and Technology. Gregor Gassner acknowledges funding through the Klaus-Tschira Stiftung via the project “HiFiLab”. Gregor Gassner and Michael Schlottke-Lakemper acknowledge funding from the Deutsche Forschungsgemeinschaft through the research unit “SNuBIC” (DFG-FOR5409).

Abstract

We study a temporal step size control of explicit Runge-Kutta (RK) methods for compressible computational fluid dynamics (CFD), including the Navier-Stokes equations and hyperbolic systems of conservation laws such as the Euler equations. We demonstrate that error-based approaches are convenient in a wide range of applications and compare them to more classical step size control based on a Courant-Friedrichs-Lewy (CFL) number. Our numerical examples show that the error-based step size control is easy to use, robust, and efficient, e.g., for (initial) transient periods, complex geometries, nonlinear shock capturing approaches, and schemes that use nonlinear entropy projections. We demonstrate these properties for problems ranging from well-understood academic test cases to industrially relevant large-scale computations with two disjoint code bases, the open source Julia packages Trixi.jl with OrdinaryDiffEq.jl and the C/Fortran code SSDC based on PETSc.

Cite this article

Hendrik Ranocha, Andrew R. Winters, Hugo Guillermo Castro, Lisandro Dalcin, Michael Schlottke-Lakemper, Gregor J. Gassner, Matteo Parsani . On Error-Based Step Size Control for Discontinuous Galerkin Methods for Compressible Fluid Dynamics[J]. Communications on Applied Mathematics and Computation, 2025 , 7(1) : 3 -39 . DOI: 10.1007/s42967-023-00264-y

References

1. Abhyankar, S., Brown, J., Constantinescu, E.M., Ghosh, D., Smith, B.F., Zhang, H.: PETSc/TS: A Modern Scalable ODE/DAE Solver Library. 1806.01437 (2018)
2. Al Jahdali, R., Boukharfane, R., Dalcin, L., Parsani, M.: Optimized explicit Runge-Kutta schemes for entropy stable discontinuous collocated methods applied to the Euler and Navier-Stokes equations. In: AIAA Scitech 2021 Forum, AIAA 2021-0633 (2021). https:// doi. org/ 10. 2514/6. 2021- 0633
3. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Technical Report ANL-95/11 - Revision 3.13, Argonne National Laboratory (2020)
4. Becker, T., Burovskiy, P., Nestorov, A.M., Palikareva, H., Reggiani, E., Gaydadjiev, G.: From exaflop to exaflow. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pp. 404–409. European Design and Automation Association, Leuven, IEEE (2017)
5. Benkhaldoun, F., Sahmim, S., Seaid, M.: A two-dimensional finite volume morphodynamic model on unstructured triangular grids. Int. J. Numer. Methods Fluids 63(11), 1296–1327 (2010). https:// doi. org/10. 1002/ fld. 2129
6. Berzins, M.: Temporal error control for convection-dominated equations in two space dimensions. SIAM J. Sci. Comput. 16(3), 558–580 (1995). https:// doi. org/ 10. 1137/ 09160 36
7. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017). https:// doi. org/ 10. 1137/ 14100 0671
8. Bogacki, P., Shampine, L.F.: A 3(2) pair of Runge-Kutta formulas. Appl. Math. Lett. 2(4), 321–325 (1989). https:// doi. org/ 10. 1016/ 0893- 9659(89) 90079-7
9. Bohm, M., Winters, A.R., Gassner, G.J., Derigs, D., Hindenlang, F., Saur, J.: An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part I: theory and numerical verification. J. Comput. Phys. 422, 108076 (2020). https:// doi. org/ 10. 1016/j. jcp. 2018. 06. 027
10. Briganti, R., Dodd, N., Kelly, D., Pokrajac, D.: An efficient and flexible solver for the simulation of the morphodynamics of fast evolving flows on coarse sediment beaches. Int. J. Numer. Methods Fluids 69(4), 859–877 (2012). https:// doi. org/ 10. 1002/ fld. 2618
11. Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–1133 (2011). https:// doi. org/ 10. 1137/ 10079 1634
12. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. John Wiley & Sons Ltd, Chichester (2016)
13. Cenaero: HiOCFD5, 5th International Workshop on High-Order CFD Methods (2018). https:// how5. cenae ro. be
14. Chalmers, N., Krivodonova, L.: A robust cfl condition for the discontinuous Galerkin method on triangular meshes. J. Comput. Phys. 403, 109095 (2020). https:// doi. org/ 10. 1016/j. jcp. 2019. 109095
15. Chan, J.: On discretely entropy conservative and entropy stable discontinuous Galerkin methods. J. Comput. Phys. 362, 346–374 (2018). https:// doi. org/ 10. 1016/j. jcp. 2018. 02. 033
16. Chan, J.: Skew-symmetric entropy stable modal discontinuous Galerkin formulations. J. Sci. Comput. 81(1), 459–485 (2019). https:// doi. org/ 10. 1007/ s10915- 019- 01026-w
17. Chan, J., Fernández, D.C.D.R., Carpenter, M.H.: Efficient entropy stable Gauss collocation methods. SIAM J. Sci. Comput. 41(5), 2938–2966 (2019). https:// doi. org/ 10. 1137/ 18M12 09234
18. Chan, J., Ranocha, H., Rueda-Ramirez, A.M., Gassner, G.J., Warburton, T.: On the entropy projection and the robustness of high order entropy stable discontinuous Galerkin schemes for under-resolved flows. Front. Phys. (2022). https:// doi. org/ 10. 3389/ fphy. 2022. 898028
19. Chertock, A., Kurganov, A., Wu, T.: Operator splitting based central-upwind schemes for shallow water equations with moving bottom topography. Commun. Math. Sci. 18(8), 2149–2168 (2020). https:// doi. org/ 10. 4310/ CMS. 2020. v18. n8. a3
20. Chu, J., Luckring, J.M.: Experimental surface pressure data obtained on 65o delta wing across Reynolds number and Mach number ranges. NASA-TM-4645 (1996)
21. Conde, S., Fekete, I., Shadid, J.N.: Embedded pairs for optimal explicit strong stability preserving Runge-Kutta methods. J. Comput. Appl. Math. 412, 114325 (2022). https:// doi. org/ 10. 1016/j. cam.2022. 114325
22. Courant, R., Friedrichs, K.O., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen 100(1), 32–74 (1928). https:// doi. org/ 10. 1007/ BF014 48839
23. Dalcin, L., Rojas, D., Zampini, S., Fernández, D.C.D.R., Carpenter, M.H., Parsani, M.: Conservative and entropy stable solid wall boundary conditions for the compressible Navier-Stokes equations: Adiabatic wall and heat entropy transfer. J. Comput. Phys. 397, 108775 (2019). https:// doi. org/ 10. 1016/j. jcp. 2019. 06. 051
24. De Vriend, H.: 2DH mathematical modelling of morphological evolutions in shallow water. Coastal Eng. 11(1), 1–27 (1987). https:// doi. org/ 10. 1016/ 0378- 3839(87) 90037-8
25. Derigs, D., Winters, A.R., Gassner, G.J., Walch, S., Bohm, M.: Ideal GLM-MHD: about the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations. J. Comput. Phys. 364, 420–467 (2018). https:// doi. org/ 10. 1016/j. jcp. 2018. 03. 002
26. Diaz, M.C., Fernández-Nieto, E.D., Ferreiro, A., Parés, C.: Two-dimensional sediment transport models in shallow water equations. A second order finite volume approach on unstructured meshes. Comput. Methods Appl. Mech. Eng. 198(33/34/35/36), 2520–2538 (2009). https:// doi. org/ 10. 1016/j. cma.2009. 03. 001
27. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980). https:// doi. org/ 10. 1016/ 0771- 050X(80) 90013-3
28. Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys. 278, 47–75 (2014). https:// doi. org/ 10. 1016/j. jcp. 2014. 08. 009
29. Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013). https:// doi. org/ 10. 1016/j. jcp.2013. 06. 014
30. Garres-Diaz, J., Diaz, M.J.C., Koellermeier, J., de Luna, T.M.: Shallow water moment models for bedload transport problems. arXiv: 2008. 08449 (2020). https:// doi. org/ 10. 48550/ arXiv. 2008. 08449
31. Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016). https:// doi. org/ 10. 1016/j. jcp. 2016. 09. 013
32. Grass, A.: Sediment transport by waves and currents. Technical Report FL29, SERC London Centre for Marine Technology (1981)
33. Guermond, J.-L., Nazarov, M., Popov, B., Tomas, I.: Second-order invariant domain preserving approximation of the Euler equations using convex limiting. SIAM J. Sci. Comput. 40(5), 3211– 3239 (2018). https:// doi. org/ 10. 1137/ 17M11 49961
34. Guermond, J.-L., Pasquetti, R., Popov, B.: Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys. 230(11), 4248–4267 (2011). https:// doi. org/ 10. 1016/j. jcp. 2010. 11. 043
35. Guermond, J.-L., Kronbichler, M., Maier, M., Popov, B., Tomas, I.: On the implementation of a robust and efficient finite element-based parallel solver for the compressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 389, 114250 (2022)
36. Gustafsson, K.: Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods. ACM Trans. Math. Softw. (TOMS) 17(4), 533–554 (1991). https:// doi. org/ 10. 1145/ 210232. 210242
37. Gustafsson, K., Lundh, M., Söderlind, G.: A PI stepsize control for the numerical solution of ordinary differential equations. BIT Num. Math. 28(2), 270–287 (1988). https:// doi. org/ 10. 1007/ BF019 34091
38. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer Series in Computational Mathematics, vol. 8. Springer, Berlin, Heidelberg (2008). https:// doi. org/ 10. 1007/ 978-3- 540- 78862-1
39. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin, Heidelberg (2010). https:// doi. org/ 10. 1007/ 978-3- 642- 05221-7
40. Hall, G., Higham, D.J.: Analysis of stepsize selection schemes for Runge-Kutta codes. IMA J. Numer. Analysis 8(3), 305–310 (1988). https:// doi. org/ 10. 1093/ imanum/ 8.3. 305
41. Heinisch, P., Ostaszewski, K., Ranocha, H.: Towards green computing: a survey of performance and energy efficiency of different platforms using OpenCL. In: Proceedings of the International Workshop on OpenCL. IWOCL’20, April 2020, Munich (Germany). ACM, New York, NY, USA (2020). https:// doi. org/ 10. 1145/ 33883 33. 34030 35
42. Hennemann, S., Rueda-Ramirez, A.M., Hindenlang, F.J., Gassner, G.J.: A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations. J. Comput. Phys. 426, 109935 (2021). https:// doi. org/ 10. 1016/j. jcp. 2020. 109935
43. Hiltebrand, A., Mishra, S.: Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws. Numerische Mathematik 126(1), 103–151 (2014). https:// doi. org/ 10. 1007/ s00211- 013- 0558-0
44. Hindenlang, F., Gassner, G.J.: A new entropy conservative two-point flux for ideal MHD equations derived from first principles. In: HONOM 2019: European Workshop on High Order Numerical Methods for Evolutionary PDEs, Theory and Applications (2019)
45. Hudson, J.: Numerical techniques for morphodynamic modelling. PhD thesis, University of Reading, Berkshire, United Kingdom (2001)
46. Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Comput. Methods Appl. Mech. Eng. 54(2), 223–234 (1986). https:// doi. org/ 10. 1016/ 0045- 7825(86) 90127-1
47. Hummel, D., Redeker, G.: A new vortex flow experiment for computer code validation. RTO/AVT Symposium on Vortex Flow and High Angle of Attack Aerodynamics, Meeting Proc. RTO-MP-069, 8–31 (2003)
48. Karniadakis, G.E., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2013). https:// doi. org/ 10. 1093/ acprof: oso/ 97801 98528 692. 001. 0001
49. Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations. Appl. Numer. Math. 35(3), 177–219 (2000). https:// doi. org/10. 1016/ S0168- 9274(99) 00141-5
50. Ketcheson, D.I.: Runge-Kutta methods with minimum storage implementations. J. Comput. Phys. 229(5), 1763–1773 (2010). https:// doi. org/ 10. 1016/j. jcp. 2009. 11. 006
51. Ketcheson, D.I., Mortensen, M., Parsani, M., Schilling, N.: More efficient time integration for Fourier pseudo-spectral DNS of incompressible turbulence. Int. J. Num. Methods Fluids 92(2), 79–93 (2020). https:// doi. org/ 10. 1002/ fld. 4773
52. Knepley, M.G., Karpeev, D.A.: Mesh algorithms for PDE with Sieve I: mesh distribution. Sci. Program. 17(3), 215–230 (2009). https:// doi. org/ 10. 3233/ SPR- 2009- 0249
53. Kolev, T., Fischer, P., Min, M., Dongarra, J., Brown, J., Dobrev, V., Warburton, T., Tomov, S., Shephard, M.S., Abdelfattah, A.: Efficient exascale discretizations: high-order finite element methods. Int. J. High Perform. Comput. Appl. 35(6), 527–552 (2021). https:// doi. org/ 10. 1177/ 10943 42021 10208 03
54. Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Springer, New York (2009)
55. Kopriva, D.A., Jimenez, E.: An assessment of the efficiency of nodal discontinuous Galerkin spectral element methods. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds.) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, pp. 223–235. Springer, Berlin (2013)
56. Kopriva, D.A., Kolias, J.H.: A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125(1), 244–261 (1996). https:// doi. org/ 10. 1006/ jcph. 1996. 0091
57. Kraaijevanger, J.F.B.M.: Contractivity of Runge-Kutta methods. BIT Numer. Math. 31(3), 482–528 (1991). https:// doi. org/ 10. 1007/ BF019 33264
58. Kubatko, E.J., Dawson, C., Westerink, J.J.: Time step restrictions for Runge-Kutta discontinuous Galerkin methods on triangular grids. J. Comput. Phys. 227(23), 9697–9710 (2008). https:// doi. org/10. 1016/j. jcp. 2008. 07. 026
59. Kuzmin, D.: Entropy stabilization and property-preserving limiters for P1 discontinuous Galerkin discretizations of scalar hyperbolic problems. J. Numer. Math. 29(4), 307–322 (2021). https:// doi. org/ 10. 1515/ jnma- 2020- 0056
60. Liu, Y., Lu, J., Shu, C.-W.: An essentially oscillation-free discontinuous Galerkin method for hyperbolic systems. SIAM J. Sci. Comput. 44(1), 230–259 (2022). https:// doi. org/ 10. 1137/ 21M14 0835X
61. Maier, M., Kronbichler, M.: Efficient parallel 3D computation of the compressible Euler equations with an invariant-domain preserving second-order finite-element scheme. ACM Trans. Parallel Comput. 8(3), 1–30 (2021). https:// doi. org/ 10. 1145/ 34706 37
62. Meister, A., Ortleb, S., Sonar, T., Wirz, M.: A comparison of the discontinuous-Galerkin- and spectral-difference-method on triangulations using PKD polynomials. J. Comput. Phys. 231(23), 7722–7729 (2012). https:// doi. org/ 10. 1016/j. jcp. 2012. 07. 025
63. Meister, A., Ortleb, S., Sonar, T., Wirz, M.: An extended discontinuous Galerkin and spectral difference method with modal filtering. Zeitschrift für Angewandte Mathematik und Mechanik 93(6/7), 459–464 (2013). https:// doi. org/ 10. 1002/ zamm. 20120 0051
64. Meyer-Peter, E., Müller, R.: Formulas for bed-load transport. In: IAHSR 2nd Meeting, Stockholm, Appendix 2, IAH (1948)
65. Nordström, J., Winters, A.R.: A linear and nonlinear analysis of the shallow water equations and its impact on boundary conditions. J. Comput. Phys. 463, 111254 (2022). https:// doi. org/ 10. 1016/j. jcp.2022. 111254
66. Orszag, S.A., Tang, C.-M.: Small-scale structure of two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 90(1), 129–143 (1979). https:// doi. org/ 10. 1017/ S0022 11207 90021 0X
67. Parsani, M., Boukharfane, R., Nolasco, I.R., Fernández, D.C.D.R., Zampini, S., Hadri, B., Dalcin, L.: High-order accurate entropy-stable discontinuous collocated Galerkin methods with the summation-by-parts property for compressible CFD frameworks: scalable SSDC algorithms and flow solver. J. Comput. Phys. 424, 109844 (2021). https:// doi. org/ 10. 1016/j. jcp. 2020. 109844
68. Parsani, M., Carpenter, M.H., Fisher, T.C., Nielsen, E.J.: Entropy stable staggered grid discontinuous spectral collocation methods of any order for the compressible Navier-Stokes equations. SIAM J. Sci. Comput. 38(5), 3129–3162 (2016). https:// doi. org/ 10. 1137/ 15M10 43510
69. Parsani, M., Carpenter, M.H., Nielsen, E.J.: Entropy stable wall boundary conditions for the threedimensional compressible Navier-Stokes equations. J. Comput. Phys. 292, 88–113 (2015). https:// doi. org/ 10. 1016/j. jcp. 2015. 03. 026
70. Parsani, M., Ketcheson, D.I., Deconinck, W.: Optimized explicit Runge-Kutta schemes for the spectral difference method applied to wave propagation problems. SIAM J. Sci. Comput. 35(2), 957–986 (2013). https:// doi. org/ 10. 1137/ 12088 5899
71. Pazner, W.: Sparse invariant domain preserving discontinuous Galerkin methods with subcell convex limiting. Comput. Methods Appl. Mech. Eng. 382, 113876 (2021). https:// doi. org/ 10. 1016/j. cma. 2021. 113876
72. Persson, P.-O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2006-112. AIAA (2006). https:// doi. org/ 10. 2514/6. 2006- 112
73. Rackauckas, C., Nie, Q.: DifferentialEquations.jl-A performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5(1), 15 (2017). https:// doi. org/ 10. 5334/ jors. 151
74. Ranocha, H., Dalcin, L., Parsani, M., Ketcheson, D.I.: Optimized Runge-Kutta methods with automatic step size control for compressible computational fluid dynamics. Commun. Appl. Math. Comput. 4, 1191–1228 (2021). https:// doi. org/ 10. 1007/ s42967- 021- 00159-w
75. Ranocha, H., Gassner, G.J.: Preventing pressure oscillations does not fix local linear stability issues of entropy-based split-form high-order schemes. Commun. Appl. Math. Comput. 4(3), 880–903 (2021). https:// doi. org/ 10. 1007/ s42967- 021- 00148-z
76. Ranocha, H., Glaubitz, J., Öffner, P., Sonar, T.: Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators. Appl. Numer. Math. 128, 1–23 (2018). https:// doi. org/ 10. 1016/j. apnum. 2018. 01. 019
77. Ranocha, H., Schlottke-Lakemper, M., Chan, J., Rueda-Ramirez, A.M., Winters, A.R., Hindenlang, F., Gassner, G.J.: Efficient implementation of modern entropy stable and kinetic energy preserving discontinuous Galerkin methods for conservation laws (2021). arXiv: 2112. 10517
78. Ranocha, H., Schlottke-Lakemper, M., Winters, A.R., Faulhaber, E., Chan, J., Gassner, G.: Adaptive numerical simulations with Trixijl: a case study of Julia for scientific computing. JuliaCon Proceedings 1(1), 77 (2022). https:// doi. org/ 10. 21105/ jcon. 00077
79. Ranocha, H., Winters, A.R., Castro, H.G., Dalcin, L., Schlottke-Lakemper, M., Gassner, G.J., Parsani, M.: Reproducibility repository for “on error-based step size control for discontinuous Galerkin methods for compressible fluid dynamics”. https:// github. com/ trixi- frame work/ paper- 2022- steps ize_ contr ol (2022). https:// doi. org/ 10. 5281/ zenodo. 70789 46
80. Ranocha, H.: Generalised summation-by-parts operators and entropy stability of numerical methods for hyperbolic balance laws. PhD thesis, TU Braunschweig, Braunschweig (February 2018)
81. Ranocha, H.: Entropy conserving and kinetic energy preserving numerical methods for the Euler equations using summation-by-parts operators. In: Sherwin, S.J., Moxey, D., Peiró, J., Vincent, P.E., Schwab, C. (eds.) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM2018. Lecture Notes in Computational Science and Engineering, vol. 134, pp. 525–535. Springer, Cham (2020). https:// doi. org/ 10. 1007/ 978-3- 030- 39647-3_ 42
82. Rivers, M.B.: NASA common research model: a history and future plans. AIAA SciTech. 1, 1–36 (2019). https:// doi. org/ 10. 2514/6. 2019- 3725
83. Rojas, D., Boukharfane, R., Dalcin, L., Fernández, D.C.D.R., Ranocha, H., Keyes, D.E., Parsani, M.: On the robustness and performance of entropy stable discontinuous collocation methods. J. Comput. Phys. 426, 109891 (2021). https:// doi. org/ 10. 1016/j. jcp. 2020. 109891
84. Saad, T., Karam, M.: Stable timestep formulas for high-order advection-diffusion and Navier-Stokes solvers. Comput. Fluids 244, 105564 (2022). https:// doi. org/ 10. 1016/j. compfluid. 2022. 105564
85. Schlottke-Lakemper, M., Winters, A.R., Ranocha, H., Gassner, G.J.: A purely hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics. J. Comput. Phys. 442, 110467 (2021). https:// doi. org/ 10. 1016/j. jcp. 2021. 110467
86. Sjögreen, B., Yee, H.: High order entropy conservative central schemes for wide ranges of compressible gas dynamics and MHD flows. J. Comput. Phys. 364, 153–185 (2018). https:// doi. org/ 10. 1016/j. jcp. 2018. 02. 003
87. Sonntag, M., Munz, C.-D.: Shock capturing for discontinuous Galerkin methods using finite volume subcells. In: Fuhrmann, J., Ohlberger, M., Rohde, C. (eds.) Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems. Springer Proceedings in Mathematics & Statistics, vol. 78, pp. 945–953. Springer, Cham (2014). https:// doi. org/ 10. 1007/ 978-3- 319- 05591-6_ 96
88. Söderlind, G.: Automatic control and adaptive time-stepping. Numer. Algorithms 31(1/2/3/4), 281– 310 (2002). https:// doi. org/ 10. 1023/A: 10211 60023 092
89. Söderlind, G.: Digital filters in adaptive time-stepping. ACM Trans. Math. Softw. (TOMS) 29(1), 1–26 (2003). https:// doi. org/ 10. 1145/ 641876. 641877
90. Söderlind, G.: Time-step selection algorithms: adaptivity, control, and signal processing. Appl. Numer. Math. 56(3/4), 488–502 (2006). https:// doi. org/ 10. 1016/j. apnum. 2005. 04. 026
91. Söderlind, G., Wang, L.: Adaptive time-stepping and computational stability. J. Comput. Appl. Math. 185(2), 225–243 (2006). https:// doi. org/ 10. 1016/j. cam. 2005. 03. 008
92. Uh Zapata, M., Gamboa Salazar, L., Itzá Balam, R., Nguyen, K.D.: An unstructured finite-volume semi-coupled projection model for bed load sediment transport in shallow-water flows. J. Hydraulic Res. 59(4), 545–558 (2021). https:// doi. org/ 10. 1080/ 00221 686. 2020. 17867 40
93. Vincent, P., Witherden, F., Vermeire, B., Park, J.S., Iyer, A.: Towards green aviation with Python at petascale. In: SC’16: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, IEEE, pp. 1–11 (2016). https:// doi. org/ 10. 1109/ SC. 2016.1
94. Ware, J., Berzins, M.: Adaptive finite volume methods for time-dependent PDEs. In: Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations, pp. 417–430. Springer, New York (1995)
95. Wintermeyer, N., Winters, A.R., Gassner, G.J., Kopriva, D.A.: An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry. J. Comput. Phys. 340, 200–242 (2017). https:// doi. org/ 10. 1016/j. jcp.2017. 03. 036
96. Winters, A.R., Gassner, G.J.: A comparison of two entropy stable discontinuous Galerkin spectral element approximations for the shallow water equations with non-constant topography. J. Comput. Phys. 301, 357–376 (2015). https:// doi. org/ 10. 1016/j. jcp. 2015. 08. 034
97. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984). https:// doi. org/ 10. 1016/ 0021- 9991(84) 90142-6
98. Yan, G., Kaur, S., Banks, J.W., Hicken, J.E.: Entropy-stable discontinuous Galerkin difference methods for hyperbolic conservation laws. J. Comput. Appl. Math. 422, 114885 (2023)
99. Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. London A: Math. Phys. Eng. Sci. 467(2134), 2752–2776 (2011). https:// doi. org/ 10. 1098/ rspa. 2011. 0153
Options
Outlines

/