Regression models play a vital role in the study of data regarding survival of subjects. The Cox proportional hazards model for regression analysis has been frequently used in survival modelling. In survival studies, it is also possible that survival time may occur with multiple occurrences of event or competing risks. The situation of competing risks arises when there are more than one mutually exclusive causes of death (or failure) for the person (or subject). In this paper, we developed a parametric regression model using Gompertz distribution via the Cox proportional hazards model with competing risks. We discussed point and interval estimation of unknown parameters and cumulative cause-specific hazard function with maximum-likelihood method and Bayesian method of estimation. The Bayes estimates are obtained based on non-informative priors and symmetric as well as asymmetric loss functions. To observe the finite sample behaviour of the proposed model under both estimation procedures, we carried out a Monte Carlo simulation analysis. To demonstrate our methodology, we also included real data analysis.
H. Rehman, N. Chandra
. Parametric Regression Approach for Gompertz Survival Times with Competing Risks[J]. Communications on Applied Mathematics and Computation, 2022
, 4(4)
: 1175
-1190
.
DOI: 10.1007/s42967-021-00154-1
1. Andersen, P.K.:Testing goodness of fit of Cox's regression and life model. Biometrics 38(1), 67-77 (1982)
2. Andrews, D.F., Herzberg, A.M.:Data:a Collection of Problems from Many Fields for the Student and Research Worker. Springer-Verlag, New York (1985)
3. Anjana, S., Sankaran, P.:Parametric analysis of lifetime data with multiple causes of failure using cause specific reversed hazard rates. Calcutta Stat. Assoc. Bull. 67(3/4), 129-142 (2015)
4. Bender, R., Augustin, T., Blettner, M.:Generating survival times to simulate Cox proportional hazards models. Stat. Med. 24(11), 1713-1723 (2005)
5. Beyersmann, J., Allignol, A., Schumacher, M.:Competing Risks and Multistate Models with R. Springer Science & Business Media, New York (2012)
6. Bryant, J., Dignam, J.J.:Semiparametric models for cumulative incidence functions. Biometrics 60(1), 182-190 (2004)
7. Cox, D.R.:Regression models and life-tables. J. R. Stat. Soc. Ser. B Methodol. 34(2), 187-220 (1972)
8. Haller, B., Schmidt, G., Ulm, K.:Applying competing risks regression models:an overview. Lifetime Data Anal. 19(1), 33-58 (2013)
9. Jeong, J.H., Fine, J.:Direct parametric inference for the cumulative incidence function. J. R. Stat. Soc. Ser. C Appl. Stat. 55(2), 187-200 (2006)
10. Kalbfleisch, J.D., Prentice, R.L.:The Statistical Analysis of Failure Time Data, vol. 360. John Wiley & Sons, New Jersey (2002). https://doi.org/10.1002/9781118032985
11. Kaplan, E.L., Meier, P.:Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53(282), 457-481 (1958)
12. Lawless, J.F.:Statistical Models and Methods for Lifetime Data, vol. 362. John Wiley & Sons, New Jersey (2003)
13. Lee, M.:Parametric inference for quantile event times with adjustment for covariates on competing risks data. J. Appl. Stat. 46(12), 2128-2144 (2019)
14. Lunn, D., Jackson, C., Best, N., Spiegelhalter, D., Thomas, A.:The BUGS Book:a Practical Introduction to Bayesian Analysis. Chapman and Hall/CRC, Boca Raton (2012)
15. Marshall, A.W., Olkin, I.:Life Distributions, vol. 13. Springer, New York (2007)
16. Prentice, R.L., Kalbfleisch, J.D., Peterson, A.V., Jr., Flournoy, N., Farewell, V.T., Breslow, N.E.:The analysis of failure times in the presence of competing risks. Biometrics 34(4), 541-554 (1978)
17. Rehman, H., Chandra, N., Hosseini-Baharanchi, F.S., Baghestani, A.R., Pourhoseingholi, M.A.:Cause-specific hazard regression estimation for modified Weibull distribution under a class of non-informative priors. J. Appl. Stat. (2021). https://doi.org/10.1080/02664763.2021.1882407
18. Tutkun, N.A., Demirhan, H.:A Bayesian approach to Cox-Gompertz model. Hacet. J. Math. Stat. 45(5), 1621-1640 (2016)
19. Wei, L.J., Lin, D.Y., Weissfeld, L.:Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J. Am. Stat. Assoc. 84(408), 1065-1073 (1989)