1. Abgrall, R.:A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes. J. Comput. Phys. 372, 640-666 (2018). https://doi. org/10. 1016/j. jcp. 2018. 06. 031 2. Abgrall, R., Mishra, S.:Uncertainty qualification for hyperbolic systems of conservation laws. In: Handbook on Numerical Methods for Hyperbolic Problems. Applied and Modern Issues, pp. 507-544. Elsevier/North Holland, Amsterdam (2017). https://doi. org/10. 1016/bs. hna. 2016. 11. 003 3. Abgrall, R., Nordström, J., Öffner, P., Tokareva, S.:Analysis of the SBP-SAT stabilization for finite element methods. II:entropy stability. Commun. Appl. Math. Comput. 5(2), 573-595 (2023). https://doi. org/10. 1007/s42967- 020- 00086-2 4. Abgrall, R., Öffner, P., Ranocha, H.:Reinterpretation and extension of entropy correction terms for residual distribution and discontinuous Galerkin schemes:application to structure preserving discretization. J. Comput. Phys. 453, 24 (2022). https://doi. org/10. 1016/j. jcp. 2022. 110955 5. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.:Julia:a fresh approach to numerical computing. SIAM Rev. 59(1), 65-98 (2017). https://doi. org/10. 1137/14100 0671 6. Cameron, R.H., Martin, W.T.:The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals. Ann. Math. 2(48), 385-392 (1947). https://doi. org/10. 2307/19691 78 7. Chen, T., Shu, C.-W.:Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427-461 (2017). https://doi. org/10.1016/j. jcp. 2017. 05. 025 8. Chen, T., Shu, C.-W.:Review of entropy stable discontinuous Galerkin methods for systems of conservation laws on unstructured simplex meshes. CSIAM Trans. Appl. Math. 1, 1-52 (2020) 9. Ciallella, M., Micalizzi, L., Öffner, P., Torlo, D.:An arbitrary high order and positivity preserving method for the shallow water equations. Comput. Fluids 247, 21 (2022). https://doi. org/10. 1016/j.compfluid. 2022. 105630 10. Ciallella, M., Torlo, D., Ricchiuto, M.:Arbitrary high order WENO finite volume scheme with flux globalization for moving equilibria preservation. J. Sci. Comput. 96(2), 28 (2023). https://doi. org/10. 1007/s10915- 023- 02280-9 11. Cockburn, B., Karniadakis, G.E., Shu, C.-W.:Discontinuous Galerkin Methods. Theory, Computation and Applications. In:Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000) 12. Dai, D., Epshteyn, Y., Narayan, A.:Hyperbolicity-preserving and well-balanced stochastic Galerkin method for shallow water equations. SIAM J. Sci. Comput. 43(2), 929-952 (2021). https://doi. org/10. 1137/20M13 60736 13. Dai, D., Epshteyn, Y., Narayan, A.:Hyperbolicity-preserving and well-balanced stochastic Galerkin method for two-dimensional shallow water equations. J. Comput. Phys. 452, 28 (2022). https://doi. org/ 10. 1016/j. jcp. 2021. 110901 14. Després, B., Poëtte, G., Lucor, D.:Robust uncertainty propagation in systems of conservation laws with the entropy closure method. In:Uncertainty Quantification in Computational Fluid Dynamics, pp. 105-149. Springer, Heidelberg (2013). https://doi. org/10. 1007/978-3- 319- 00885-1_3 15. Dürrwächter, J., Kuhn, T., Meyer, F., Schlachter, L., Schneider, F.:A hyperbolicity-preserving discontinuous stochastic Galerkin scheme for uncertain hyperbolic systems of equations. J. Comput. Appl. Math. 370, 22 (2020). https://doi. org/10. 1016/j. cam. 2019. 112602 16. Fisher, T.C., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, C.:Discretely conservative finite-difference formulations for nonlinear conservation laws in split form:theory and boundary conditions. J. Comput. Phys. 234, 353-375 (2013). https://doi. org/10. 1016/j. jcp. 2012. 09. 026 17. Fjordholm, U.S., Mishra, S., Tadmor, E.:Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys. 230(14), 5587-5609 (2011). https:// doi. org/10. 1016/j. jcp. 2011. 03. 042 18. Gaburro, E., Öffner, P., Ricchiuto, M., Torlo, D.:High order entropy preserving ADER-DG schemes. Appl. Math. Comput. 440, 21 (2023). https://doi. org/10. 1016/j. amc. 2022. 127644 19. Gassner, G.J.:A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), 1233-1253 (2013).https://doi. org/10. 1137/12089 0144 20. Gassner, G.J., Winters, A.R., Kopriva, D.A.:Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39-66 (2016). https://doi. org/10. 1016/j. jcp. 2016. 09. 013 21. Gassner, G.J., Winters, A.R., Kopriva, D.A.:A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272, 291-308 (2016). https://doi. org/10. 1016/j. amc. 2015. 07. 014 22. Gerster, S., Herty, M.:Entropies and symmetrization of hyperbolic stochastic Galerkin formulations. Commun. Comput. Phys. 27(3), 639-671 (2020). https://doi. org/10. 4208/cicp. OA- 2019- 0047 23. Gerster, S., Herty, M., Sikstel, A.:Hyperbolic stochastic Galerkin formulation for the p-system. J. Comput. Phys. 395, 186-204 (2019). https://doi. org/10. 1016/j. jcp. 2019. 05. 049 24. Gerster, S., Sikstel, A., Visconti, G.:Haar-type stochastic Galerkin formulations for hyperbolic systems with Lipschitz continuous flux function. arXiv:2022- 03 (2022) 25. Gottlieb, D., Xiu, D.:Galerkin method for wave equations with uncertain coefficients. Commun. Comput. Phys. 3(2), 505-518 (2008) 26. Herty, M., Kolb, A., Müller, S.:Higher-Dimensional Deterministic Formulation of Hyperbolic Conservation Laws with Uncertain Initial Data. Institut für Geometrie und Praktische Mathematik, RWTH Aachen (2021) 27. Herty, M., Kolb, A., Müller, S.:Multiresolution analysis for stochastic hyperbolic conservation laws. IMA J. Numer. Anal. 44, 536-575 (2023). https://doi. org/10. 1093/imanum/drad0 10 28. Kuzmin, D., Hajduk, H., Rupp, A.:Limiter-based entropy stabilization of semi-discrete and fully discrete schemes for nonlinear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 389, 28 (2022). https://doi. org/10. 1016/j. cma. 2021. 114428 29. LeFloch, P.G., Mercier, J.M., Rohde, C.:Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40(5), 1968-1992 (2002). https://doi. org/10. 1137/S0036 14290 24006 9X 30. Mantri, Y., Öffner, P., Ricchiuto, M.:Fully well balanced entropy controlled DGSEM for shallow water flows:global flux quadrature and cell entropy correction. arXiv:2212. 11931 (2022) 31. Meister, A., Ortleb, S.:On unconditionally positive implicit time integration for the DG scheme applied to shallow water flows. Int. J. Numer. Methods Fluids 76(2), 69-94 (2014). https://doi. org/ 10. 1002/fld. 3921 32. Michel, S., Torlo, D., Ricchiuto, M., Abgrall, R.:Spectral analysis of high order continuous FEM for hyperbolic PDEs on triangular meshes:influence of approximation, stabilization, and time-stepping. J. Sci. Comput. 94, 49 (2023). https://doi. org/10. 1007/s10915- 022- 02087-0 33. Mishra, S., Risebro, N.H., Schwab, C., Tokareva, S.:Numerical solution of scalar conservation laws with random flux functions. SIAM/ASA J. Uncertain. Quantif. 4, 552-591 (2016). https://doi. org/10. 1137/12089 6967 34. Öffner, P.:Approximation and Stability Properties of Numerical Methods for Hyperbolic Conservation Laws. Springer, London (2023) 35. Öffner, P., Glaubitz, J., Ranocha, H.:Stability of correction procedure via reconstruction with summation-by-parts operators for Burgers' equation using a polynomial chaos approach. ESAIM Math. Model. Numer. Anal. 52(6), 2215-2245 (2018). https://doi. org/10. 1051/m2an/20180 72 36. Öffner, P., Ranocha, H., Sonar, T.:Correction procedure via reconstruction using summation-by-parts operators. In:Theory, Numerics and Applications of Hyperbolic Problems II, Aachen, Germany, August 2016, pp. 491-501. Springer, Cham (2018). https://doi. org/10. 1007/978-3- 319- 91548-7_37 37. Petrella, M., Tokareva, S., Toro, E.F.:Uncertainty quantification methodology for hyperbolic systems with application to blood flow in arteries. J. Comput. Phys. 386, 405-427 (2019). https://doi. org/10. 1016/j. jcp. 2019. 02. 013 38. Pettersson, M.P., Iaccarino, G., Nordström, J.:Polynomial chaos methods for hyperbolic partial differential equations:numerical techniques for fluid dynamics problems in the presence of uncertainties. In:Math. Eng. Springer, Cham (2015). https://doi. org/10. 1007/978-3- 319- 10714-1 39. Pettersson, P., Iaccarino, G., Nordström, J.:A stochastic Galerkin method for the Euler equations with Roe variable transformation. J. Comput. Phys. 257, 481-500 (2014). https://doi. org/10. 1016/j. jcp. 2013. 10. 011 40. Poëtte, G., Després, B., Lucor, D.:Uncertainty quantification for systems of conservation laws. J.Comput. Phys. 228(7), 2443-2467 (2009). https://doi. org/10. 1016/j. jcp. 2008. 12. 018 41. Ranocha, H.:Shallow water equations:split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM. Int. J. Geomath. 8(1), 85-133 (2017). https://doi. org/10. 1007/ s13137- 016- 0089-9 42. Ranocha, H., Schlottke-Lakemper, M., Winters, A.R., Faulhaber, E., Chan, J., Gassner, G.:Adaptive numerical simulations with Trixi.jl:a case study of Julia for scientific computing. Proc. JuliaCon Conf. 1(1), 77 (2022). arXiv:2108. 06476 43. Ricchiuto, M., Abgrall, R., Deconinck, H.:Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes. J. Comput. Phys. 222(1), 287- 331 (2007). https://doi. org/10. 1016/j. jcp. 2006. 06. 024 44. Schlachter, L., Schneider, F.:A hyperbolicity-preserving stochastic Galerkin approximation for uncertain hyperbolic systems of equations. J. Comput. Phys. 375, 80-98 (2018). https://doi. org/10. 1016/j.jcp. 2018. 07. 026 45. Schlottke-Lakemper, M., Gassner, G.J., Ranocha, H., Winters, A.R., Chan, J.:Trixi.jl:adaptive high-order numerical simulations of hyperbolic PDEs in Julia. https://github. com/trixi- frame work/Trixi. jl (2021) 46. Schwab, C., Tokareva, S.:High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data. ESAIM Math. Model. Numer. Anal. 47(3), 807-835 (2013).https://doi. org/10. 1051/m2an/20120 60 47. Sonday, B.E., Berry, R.D., Najm, H.N., Debusschere, B.J.:Eigenvalues of the Jacobian of a Galerkinprojected uncertain ODE system. SIAM J. Sci. Comput. 33(3), 1212-1233 (2011). https://doi. org/10.1137/10078 5922 48. Tadmor, E.:The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49, 91-103 (1987). https://doi. org/10. 2307/20082 51 49. Tadmor, E.:Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451-512 (2003). https://doi. org/10. 1017/S0962 49290 20001 56 50. Tokareva, S., Schwab, C., Mishra, S.:High order SFV and mixed SDG/FV methods for the uncertainty quantification in multidimensional conservation laws. In:Lecture Notes in Computational Science and Engineering, vol. 99. Springer, Switzerland (2014). https://doi. org/10. 1007/978-3- 319- 05455-1_7 51. Wen, X., Don, W.S., Gao, Z., Xing, Y.:Entropy stable and well-balanced discontinuous Galerkin methods for the nonlinear shallow water equations. J. Sci. Comput. 83(3), 32 (2020). https://doi. org/10.1007/s10915- 020- 01248-3 52. Wiener, N.:The homogeneous chaos. Am. J. Math. 60, 897-936 (1938). https://doi. org/10. 2307/23712 68 53. Winters, A.R., Gassner, G.J.:A comparison of two entropy stable discontinuous Galerkin spectral element approximations for the shallow water equations with non-constant topography. J. Comput. Phys. 301, 357-376 (2015). https://doi. org/10. 1016/j. jcp. 2015. 08. 034 54. Wu, X., Kubatko, E.J., Chan, J.:High-order entropy stable discontinuous Galerkin methods for the shallow water equations:curved triangular meshes and GPU acceleration. Comput. Math. Appl. 82, 179-199 (2021). https://doi. org/10. 1016/j. camwa. 2020. 11. 006 55. Xiao, T., Kusch, J., Koellermeier, J., Frank, M.:A flux reconstruction stochastic Galerkin scheme for hyperbolic conservation laws. J. Sci. Comput. (2023). https://doi. org/10. 1007/s10915- 023- 02143-3 56. Xing, Y., Shu, C.-W.:A survey of high order schemes for the shallow water equations. J. Math. Study 47(3), 221-249 (2014). https://doi. org/10. 4208/jms. v47n3. 14. 01 57. Xiu, D., Hesthaven, J.S.:High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118-1139 (2005). https://doi. org/10. 1137/04061 5201 58. Xiu, D., Karniadakis, G.E.:The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619-644 (2002). https://doi. org/10. 1137/S1064 82750 13878 26 59. Zhong, X., Shu, C.-W.:Entropy stable Galerkin methods with suitable quadrature rules for hyperbolic systems with random inputs. J. Sci. Comput. 92(1), 30 (2022). https://doi. org/10. 1007/s10915- 022- 01866-z |