1. Arnold, D., Brezzi, F.:Mixed and nonconforming finite element methods:implementation, postprocessing and error estimates. RAIRO Model. Math. Anal. Numer. 19, 7-32 (1985) 2. Babuska, I.:The finite element method with Lagrange multipliers. Numer. Math. 20, 179-192 (1973) 3. Boffi, D., Brezzi, F., Demkowicz, L., Duran, R., Falk, R., Fortin, M.:Mixed finite elements, compatibility conditions, and applications. In:Boffi, D., Gastaldi, L. (eds) Lecture Notes in Mathematics. Springer-Verlag, Berlin (2008) 4. Boffi, D., Brezzi, F., Fortin, M.:Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013) 5. Brezzi, F., Douglas, J., Duran, R., Fortin, M.:Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51, 237-250 (1987) 6. Brezzi, F., Douglas, J., Marini, L.D.:Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217-235 (1985) 7. Brezzi, F., Fortin, M.:Mixed and Hybrid Finite Elements. Springer-Verlag, New York (1991) 8. Chen, W., Wang, Y.:Minimal degree H(curl) and H(div) conforming finite elements on polytopal meshes. Math. Comput. 86, 2053-2087 (2017) 9. Cockburn, B., Gopalakrishnan, J., Lazarov, R.:Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319-1365 (2009) 10. Di Pietro, D., Ern, A.:Hybrid high-order methods for variable-diffusion problems on general meshes. Comptes Rendus Mathmatique 353, 31-34 (2015) 11. Kuznetsov, Y., Repin, S.:New mixed finite element method on polygonal and polyhedral meshes. Russian J. Numer. Anal. Math. Model. 18(3), 261-278 (2003) 12. Kuznetsov, Y., Repin, S.:Convergence analysis and error estimates for mixed finite element method on distorted meshes. J. Numer. Math. 13(1), 33-51 (2005) 13. Lipnikov, K., Manzini, G., Brezzi, F., Buffa, A.:The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes. J. Comput. Phys. 230, 305-328 (2011) 14. Raviart, P., Thomas, J.:A mixed finite element method for second order elliptic problems. In:Galligani, I., Magenes, E. (eds) Mathematical Aspects of the Finite Element Method, Lectures Notes in Math. vol. 606. Springer-Verlag, New York (1977) 15. Talischi, C., Paulino, G., Pereira, A., Menezes, I.:Polygonal finite elements for topology optimization:a unifying paradigm. Int. J. Numer. Meth. Eng. 82, 671-698 (2010) 16. Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L., Russo, A.:Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 119-214 (2013) 17. Wang, J.:Mixed finite element methods. In:Cai, W., Shi, Z., Shu, C.-W., Xu, J. (eds) Numerical Methods in Scientific and Engineering Computing. Academic Press, USA 18. Wang, J., Ye, X.:A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103-115 (2013) 19. Wang, J., Ye, X.:A weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comput. 83, 2101-2126 (2014) 20. Ye, X., Zhang, S.:A conforming DG method for the biharmonic equation on polytopal. arXiv:1907.10661 |