Communications on Applied Mathematics and Computation ›› 2022, Vol. 4 ›› Issue (4): 1313-1350.doi: 10.1007/s42967-021-00177-8
Previous Articles Next Articles
Ren-jun Qi, Zhi-zhong Sun
Received:
2021-08-04
Revised:
2021-10-07
Online:
2022-12-20
Published:
2022-09-26
Supported by:
CLC Number:
Ren-jun Qi, Zhi-zhong Sun. Some Numerical Extrapolation Methods for the Fractional Sub-diffusion Equation and Fractional Wave Equation Based on the L1 Formula[J]. Communications on Applied Mathematics and Computation, 2022, 4(4): 1313-1350.
1. Agrawal, O.P.:Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29(1/2/3/4), 145-155 (2002) 2. Alikhanov, A.A.:A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424-438 (2015) 3. Chen, M.H., Deng, W.H.:High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights. SIAM J. Sci. Comput. 37(2), A890-A917 (2015) 4. Diethem, K., Walz, G.:Numerical solution of fractional order differential equations by extrapolation. Numer. Algor. 16(3/4), 231-253 (1997) 5. Dimitrov, Y.:Numerical approximations for fractional differential equations. J. Fract. Calc. Appl. 5(22), 1-45 (2014) 6. Dimitrov, Y.:A second order approximation for the Caputo fractional derivative. J. Fract. Calc. Appl. 7(2), 175-195 (2016) 7. Dimitrov, Y.:Three-point approximation for Caputo fractional derivative. Commun. Appl. Math. Comput. 31(4), 413-442 (2017) 8. Du, R., Cao, W.R., Sun, Z.Z.:A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34(10), 2998-3007 (2010) 9. Feng, R.H., Liu, Y., Hou, Y.X., Li, H., Fang, Z.C.:Mixed element algorithm based on a second-order time approximation scheme for a two-dimensional nonlinear time fractional coupled sub-diffusion model. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01032-9 10. Gao, G.H., Sun, Z.Z.:A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230(3), 586-595 (2011) 11. Gao, G.H., Sun, Z.Z.:Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations. Numer. Methods Partial Differ. Equations 32(2), 591-615 (2016) 12. Gao, G.H., Sun, Z.Z., Zhang, H.W.:A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33-50 (2014) 13. Godoy, S., Garcia-Colin, L.S.:From the quantum random walk to classical mesoscopic diffusion in crystalline solids. Phys. Rev. E 53(6), 5779-5785 (1996) 14. Guan, Z., Wang, X.D., Jie, O.Y.:An improved finite difference/finite element method for the fractional Rayleigh-Stokes problem with a nonlinear source term. J. Appl. Math. Comput. 65(1/2), 451-479 (2021) 15. Hao, Z.P., Sun, Z.Z., Cao, W.R.:A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787-805 (2015) 16. Ji, C.C., Sun, Z.Z.:A high-order compact finite difference scheme for the fractional subdiffusion equation. J. Sci. Comput. 64(3), 959-985 (2015) 17. Ji, C.C., Sun, Z.Z.:The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation. Appl. Math. Comput. 269, 775-791 (2015) 18. Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.:Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650-678 (2017) 19. Li, C.P., Chen, A.:Numerical methods for fractional partial differential equations. Int. J. Comput. Math. 95(6/7), 1048-1099 (2018) 20. Li, C.P., Zeng, F.H.:Numerical Methods for Fractional Calculus. CRC Press, Boca Raton (2015) 21. Liao, H.L., Li, D.F., Zhang, J.W.:Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112-1133 (2018) 22. Lin, Y.M., Xu, C.J.:Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533-1552 (2007) 23. Lin, Y.M., Li, X.J., Xu, C.J.:Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80(275), 1369-1396 (2011) 24. Liu, Y., Zhang, M., Li, H., Li, J.C.:High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation. Comput. Math. Appl. 73(6), 1298-1314 (2017) 25. Liu, Y., Du, W.Y., Li, H., Liu, F.W., Wang, Y.J.:Some second-order θ schemes combined with finite element method for nonlinear fractional cable equation. Numer. Algor. 80(2), 533-555 (2019) 26. Lv, C.W., Xu, C.J.:Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2699-A2724 (2016) 27. Mainardi, F.:The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9(6), 23-28 (1996) 28. Meerschaert, M.M., Tadjeran, C.:Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172(1), 65-77 (2004) 29. Oldham, K.B., Spanier, J.:The Fractional Calculus:Theory and Applications of Differential and Integration to Arbitrary Order. Academic Press, New York (1974) 30. Qureshi, S., Yusuf, A., Shaikh, A.A., Inc, M.:Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data. Phys. A 534, 122149 (2019) 31. Smith, G.D.:Numerical Solution of Partial Differential Equations:Finite Difference Methods. Oxford University Press, Oxford (1985) 32. Srivastava, V., Rai, K.N.:A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 51(5/6), 616-624 (2010) 33. Stynes, M., O'Riordan, E., Gracia, J.L.:Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057-1079 (2017) 34. Sun, Z.Z.:Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012) (in Chinese) 35. Sun, Z.Z., Gao, G.H.:Fractional Differential Equations-Finite Difference Methods. De Gruyter, Berlin, Boston (2020) 36. Sun, Z.Z., Gao, G.H.:The Finite Difference Methods of Fractional Differential Equations, 2nd edn. Science Press, Beijing (2021) (in Chinese) 37. Sun, Z.Z., Wu, X.N.:A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193-209 (2006) 38. Sun, H.G., Zhang, Y., Chen, W., Reeves, D.M.:Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media. J. Contam. Hydrol. 157, 47-58 (2014) 39. Sun, H., Sun, Z.Z., Gao, G.H.:Some temporal second order difference schemes for fractional wave equations. Numer. Methods Partial Differ. Equations 32(3), 970-1001 (2016) 40. Sun, H.G., Li, Z.P., Zhang, Y., Chen, W.:Fractional and fractal derivative models for transient anomalous diffusion:model comparison. Chaos Solitons Fractals 102, 346-353 (2017) 41. Sun, Z.Z., Ji, C.C., Du, R.L.:A new analytical technique of the L-type difference schemes for time fractional mixed sub-diffusion and diffusion-wave equations. Appl. Math. Lett. 102, 106115 (2020) 42. Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.:A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213(1), 205-213 (2006) 43. Tian, W.Y., Zhou, H., Deng, W.H.:A class of second order difference approximation for solving space fractional diffusion equations. Math. Comput. 84(294), 1703-1727 (2012) 44. Vong, S., Lyu, P., Chen, X., Lei, S.L.:High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives. Numer. Algor. 72(1), 195-210 (2016) 45. Wang, Y.M.:A high-order compact finite difference method and its extrapolation for fractional mobile/immobile convection-diffusion equations. Calcolo 54(3), 733-768 (2017) 46. Wang, Y.M.:A Crank-Nicolson-type compact difference method and its extrapolation for time fractional Cattaneo convection-diffusion equations with smooth solutions. Numer. Algor. 81(2), 489-527 (2019) 47. Wang, Y.M., Ren, L.:A high-order L2-compact difference method for Caputo-type time fractional sub-diffusion equations with variable coefficients. Appl. Math. Comput. 342, 71-93 (2019) 48. Wang, Z.B., Vong, S.:Compact difference schemes for the modified anomalous fractional subdiffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1-15 (2014) 49. Wang, Y.M., Wang, T.:A compact ADI method and its extrapolation for time fractional subdiffusion equations with nonhomogeneous Neumann boundary conditions. Comput. Math. Appl. 75(3), 721-739 (2018) 50. Yan, Y.G., Sun, Z.Z., Zhang, J.W.:Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations:a second-order scheme. Commun. Comput. Phys. 22(4), 1028-1048 (2017) 51. Yang, X.H., Zhang, H.X., Xu, D.:Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 256, 824-837 (2014) 52. Yong, Z., Benson, D.A., Meerschaert, M.M., Scheffler, H.P.:On using random walks to solve the space-fractional advection-dispersion equations. J. Stat. Phys. 123(1), 89-110 (2006) 53. Zhou, H., Tian, W.Y., Deng, W.H.:Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56(1), 45-66 (2013) |
[1] | Xiaoyi Liu, Tingchun Wang, Shilong Jin, Qiaoqiao Xu. Two Energy-Preserving Compact Finite Difference Schemes for the Nonlinear Fourth-Order Wave Equation [J]. Communications on Applied Mathematics and Computation, 2022, 4(4): 1509-1530. |
[2] | Lu Zhang, Daniel Appelö, Thomas Hagstrom. Energy-Based Discontinuous Galerkin Difference Methods for Second-Order Wave Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 855-879. |
[3] | Hendrik Ranocha, Gregor J. Gassner. Preventing Pressure Oscillations Does Not Fix Local Linear Stability Issues of Entropy-Based Split-Form High-Order Schemes [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 880-903. |
[4] | Junhong Tian, Hengfei Ding. A Note on Numerical Algorithm for the Time-Caputo and Space-Riesz Fractional Difusion Equation [J]. Communications on Applied Mathematics and Computation, 2021, 3(4): 571-584. |
[5] | Giacomo Albi, Lorenzo Pareschi. High Order Semi-implicit Multistep Methods for Time-Dependent Partial Diferential Equations [J]. Communications on Applied Mathematics and Computation, 2021, 3(4): 701-718. |
[6] | Leilei Wei, Shuying Zhai, Xindong Zhang. Error Estimate of a Fully Discrete Local Discontinuous Galerkin Method for Variable-Order Time-Fractional Diffusion Equations [J]. Communications on Applied Mathematics and Computation, 2021, 3(3): 429-444. |
[7] | Le Zhao, Can Li, Fengqun Zhao. Efficient Difference Schemes for the Caputo-Tempered Fractional Diffusion Equations Based on Polynomial Interpolation [J]. Communications on Applied Mathematics and Computation, 2021, 3(1): 1-40. |
[8] | Hendrik Ranocha, Katharina Ostaszewski, Philip Heinisch. Discrete Vector Calculus and Helmholtz Hodge Decomposition for Classical Finite Diference Summation by Parts Operators [J]. Communications on Applied Mathematics and Computation, 2020, 2(4): 581-611. |
[9] | K. A. Mustapha, K. M. Furati, O. M. Knio, O. P. Le Maître. A Finite Diference Method for Space Fractional Diferential Equations with Variable Difusivity Coefcient [J]. Communications on Applied Mathematics and Computation, 2020, 2(4): 671-688. |
[10] | Jun Zhu, Chi, Wang Shu. Convergence to Steady-State Solutions of the New Type of High-Order Multi-resolution WENO Schemes: a Numerical Study [J]. Communications on Applied Mathematics and Computation, 2020, 2(3): 429-460. |
[11] | Junying Cao, Ziqiang Wang, Chuanju Xu. A High-Order Scheme for Fractional Ordinary Diferential Equations with the Caputo-Fabrizio Derivative [J]. Communications on Applied Mathematics and Computation, 2020, 2(2): 179-199. |
[12] | Xue-lei Lin, Pin Lyu, Michael K. Ng, Hai-Wei Sun, Seakweng Vong. An Efcient Second-Order Convergent Scheme for One-Side Space Fractional Difusion Equations with Variable Coefcients [J]. Communications on Applied Mathematics and Computation, 2020, 2(2): 215-239. |
[13] | R. Mokhtari, F. Mostajeran. A High Order Formula to Approximate the Caputo Fractional Derivative [J]. Communications on Applied Mathematics and Computation, 2020, 2(1): 1-29. |
[14] | Yuxin Zhang, Hengfei Ding. Numerical Algorithm for the Time-Caputo and Space-Riesz Fractional Difusion Equation [J]. Communications on Applied Mathematics and Computation, 2020, 2(1): 57-72. |
[15] | Yanyong Wang, Yubin Yan, Ye Hu. Numerical Methods for Solving Space Fractional Partial Differential Equations Using Hadamard Finite-Part Integral Approach [J]. Communications on Applied Mathematics and Computation, 2019, 1(4): 505-523. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 151
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 3203
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||