1. Abramowitz, M., Stegun, I.A.:Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1964) 2. Anjara, F., Solofoniaina, J.:Solution of general fractional oscillation relaxation equation by Adomian's method. Gen. Math. Notes 20(2), 1-11 (2014) 3. Cartea, A., del Castillo-Negrete, D.:Fractional diffusion models of option prices in markets with jumps. Physica A 374(2), 749-763 (2007) 4. Diethelm, K., Ford, N.J.:Volterra integral equations and fractional calculus:do neighboring solutions intersect? J. Integral Equ. Appl. 24(1), 25-37 (2012) 5. Dimitrov, Y.:Numerical approximations for fractional differential equations. J. Fract. Calc. Appl. 5(3S), 1-45 (2014) 6. Dimitrov, Y.:A second order approximation for the Caputo fractional derivative. J. Fract. Calc. Appl. 7(2), 175-195 (2016) 7. Dimitrov, Y.:Three-point approximation for Caputo fractional derivative. Commun. Appl. Math. Comput. 31(4), 413-442 (2017) 8. Dimitrov, Y., Miryanov, R., Todorov, V.:Quadrature formulas and Taylor series of secant and tangent. Econ. Comput. Sci. 4, 23-40 (2017) 9. Ding, H., Li, C.:High-order algorithms for Riesz derivative and their applications (III). Fract. Calc. Appl. Anal. 19(1), 19-55 (2016) 10. Ding, H., Li, C.:High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71, 759-784 (2017) 11. Eslahchi, M.R., Dehghan, M., Parvizi, M.:Application of the collocation method for solving nonlinear fractional integro-differential equations. J. Comput. Appl. Math. 257, 105-128 (2014) 12. Gülsu, M., Öztürk, Y., Anapali, A.:Numerical approach for solving fractional relaxation-oscillation equation. Appl. Math. Model. 37(8), 5927-5937 (2013) 13. Hilfer, R.:Applications of Fractional Calculus in Physics. World Scientific Publ. Co., Singapore (2000) 14. Huang, L., Li, X.F., Zhao, Y.L., Duan, X.Y.:Approximate solution of fractional integro-differential equations by Taylor expansion method. Comput. Math. Appl. 62, 1127-1134 (2011) 15. Kouba, O.:Bernoulli polynomials and applications. arXiv:1309. 7560v2 (2013) 16. Lampret, V.:The Euler-Maclaurin and Taylor formulas:twin, elementary derivations. Math. Mag. 74(2), 109-122 (2001) 17. Mainardi, F.:Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solit. Fract. 7(9), 1461-1477 (1996) 18. Mainardi, F., Gorenflo, R.:Time-fractional derivatives in relaxation processes:a tutorial survey. Fract. Calc. Appl. Anal. 10(3), 269-308 (2007) 19. Mokhtary, P.:Discrete Galerkin method for fractional integro-differential equations. Acta Math. Sci. 36(2), 560-578 (2016) 20. Pérez, D., Yamilet, Q.:A survey on the Weierstrass approximation theorem. Divulgaciones Matemáticas 16(1), 231-247 (2008) 21. Podlubny, I.:Fractional Differential Equations. Academic Press, San Diego (1999) 22. Sidi, A.:Euler-Maclaurin expansions for integrals with endpoint singularities:a new perspective. Numerische Mathematik 98(2), 371-387 (2004) 23. Sun, H.G., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.Q.:A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simulat. 64, 213-231 (2018) 24. Tadjeran, C., Meerschaert, M.M., Scheffer, H.P.:A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205-213 (2006) 25. Tian, W.Y., Zhou, H., Deng, W.:A class of second order difference approximation for solving space fractional diffusion equations. Math. Comput. 84(294), 1703-1727 (2012) 26. Todorov, V., Dimitrov, Y., Dimov, I.:Second order shifted approximations for the first derivative. In:Dimov, I., Fidanova, S. (eds) Advances in High Performance Computing. HPC 2019. Studies in Computational Intelligence 902, Springer, Cham (2020) 27. Wu, R., Ding, H., Li, C.:Determination of coefficients of high-order schemes for Riemann-Liouville derivative. Sci. World. J. 2014, 402373 (2014) |