1. Beckett, G., Mackenzie, J.A.:Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem. Appl. Numer. Math. 35, 87-109 (2000) 2. Beljadid, A., Mohammadian, A., Kurganov, A.:Well-balanced positivity preserving cell-vertex central-upwind scheme for shallow water flows. Comput. Fluids 136, 193-206 (2016) 3. Ben-Artzi, M., Falcovitz, J.:Generalized Riemann problems in computational fluid dynamics, vol.11 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2003) 4. Berger, M.J., Colella, P.:Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64-84 (1989) 5. Berger, M.J., LeVeque, R.J.:Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems. SIAM J. Numer. Anal. 35, 2298-2316 (1998). (electronic) 6. Berger, M.J., Oliger, J.:Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484-512 (1984) 7. Bouchut, F.:Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources, Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004) 8. Brilliantov, N.V., Pöschel, T.:Kinetic theory of granular gases, Oxford Graduate Texts. Oxford University Press, Oxford (2004) 9. Bryson, S., Epshteyn, Y., Kurganov, A., Petrova, G.:Well-balanced positivity preserving centralupwind scheme on triangular grids for the Saint-Venant system, M2AN Math. Model. Numer. Anal. 45, 423-446 (2011) 10. Cao, W., Huang, W., Russell, R.:An r-adaptive finite element method based upon moving mesh PDEs. J. Comput. Phys. 149, 221-244 (1999) 11. Dewar, J., Kurganov, A., Leopold, M.:Pressure-based adaption indicator for compressible Euler equations. Numer. Methods Partial Diff. Equ. 31, 1844-1874 (2015) 12. Don, W.-S., Gao, Z., Li, P., Wen, X.:Hybrid compact-WENO finite difference scheme with conjugate Fourier shock detection algorithm for hyperbolic conservation laws. SIAM J. Sci. Comput. 38, A691-A711 (2016) 13. Dvinsky, A.S.:Adaptive grid generation from harmonic maps on Riemannian manifolds. J. Comput. Phys. 95, 450-476 (1991) 14. Fouxon, I., Meerson, B., Assaf, M., Livne, E.:Formation of density singularities in ideal hydrodynamics of freely cooling inelastic gases:a family of exact solutions. Phys. Fluids 19, 093303 (2007) 15. Godlewski, E., Raviart, P.-A.:Numerical Approximation of Hyperbolic Systems of Conservation Laws, vol. 118 of Applied Mathematical Sciences. Springer-Verlag, New York (1996) 16. Gottlieb, S., Shu, C., Tadmor, E.:Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89-112 (2001). (electronic) 17. Gottlieb, S., Ketcheson, D., Shu, C.-W.:Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2011) 18. Guermond, J.-L., Popov, B.:Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations. J. Comput. Phys. 321, 908-926 (2016) 19. Han, E., Li, J., Tang, H.:Accuracy of the adaptive GRP scheme and the simulation of 2-D Riemann problems for compressible Euler equations. Commun. Comput. Phys. 10, 577-606 (2011) 20. Huang, W., Russell, R.D.:Adaptive Moving Mesh Methods, vol. 174 of Applied Mathematical Sciences. Springer, New York (2011) 21. Huang, W., Sun, W.:Variational mesh adaptation. II. Error estimates and monitor functions. J. Comput. Phys. 184, 619-648 (2003) 22. Jin, C., Xu, K.:An adaptive grid method for two-dimensional viscous flows. J. Comput. Phys. 218, 68-81 (2006) 23. Jin, C., Xu, K.:A unified moving grid gas-kinetic method in Eulerian space for viscous flow computation. J. Comput. Phys. 222, 155-175 (2007) 24. Karni, S., Kurganov, A., Petrova, G.:A smoothness indicator for adaptive algorithms for hyperbolic systems. J. Comput. Phys. 178, 323-341 (2002) 25. Kröner, D.:Numerical Schemes for Conservation Laws, Wiley-Teubner Series Advances in Numerical Mathematics. Wiley, Chichester (1997) 26. Kurganov, A., Lin, C.-T.:On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2, 141-163 (2007) 27. Kurganov, A., Petrova, G.:Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws. Numer. Methods Partial Diff. Equ. 21, 536-552 (2005) 28. Kurganov, A., Tadmor, E.:New high resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241-282 (2000) 29. Kurganov, A., Tadmor, E.:Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Diff. Equ. 18, 584-608 (2002) 30. Kurganov, A., Noelle, S., Petrova, G.:Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23, 707-740 (2001). (electronic) 31. LeVeque, R.J.:Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002) 32. LeVeque, R.J., George, D.L., Berger, M.J.:Tsunami modeling with adaptively refined finite volume methods. Acta Numer. 20, 211-289 (2011) 33. Li, P., Gao, Z., Don, W.-S., Xie, S.:Hybrid Fourier-continuation method and weighted essentially nonoscillatory finite difference scheme for hyperbolic conservation laws in a single-domain framework. J. Sci. Comput. 64, 670-695 (2015) 34. Luding, S.:Towards dense, realistic granular media in 2D. Nonlinearity 22, R101-R146 (2009) 35. Nessyahu, H., Tadmor, E.:Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408-463 (1990) 36. Powell, K.G., Roe, P.L., Quirk, J.:Adaptive-mesh algorithms for computational fluid dynamics. In:Algorithmic Trends in Computational Fluid Dynamics, ICASE/NASA LaRC Ser, vol. 1993, pp. 303-337. Springer, New York (1991) 37. Puppo, G., Semplice, M.:Numerical entropy and adaptivity for finite volume schemes. Commun. Comput. Phys. 10, 1132-1160 (2011) 38. Rozanova, O.:Exact solutions with singularities to ideal hydrodynamics of inelastic gases. In:Hyperbolic Problems:Theory, Numerics, Applications, vol. 8 of AIMS Ser. Appl. Math., Am. Inst. Math. Sci. (AIMS), pp. 899-906. Springfield, MO (2014) 39. Rozanova, O.:Formation of singularities in solutions to ideal hydrodynamics of freely cooling inelastic gases. Nonlinearity 25, 1547-1558 (2012) 40. Shirkhani, H., Mohammadian, A., Seidou, O., Kurganov, A.:A well-balanced positivity-preserving central-upwind scheme for shallow water equations on unstructured quadrilateral grids. Comput. Fluids 126, 25-40 (2016) 41. Sweby, P.K.:High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995-1011 (1984) 42. Tang, H., Tang, T.:Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41, 487-515 (2003) 43. Toro, E.F.:Riemann Solvers and Numerical Methods for Fluid Dynamics:A Practical Introduction, 3rd edn. Springer, Berlin, Heidelberg (2009) 44. Van Dam, A., Zegeling, P.A.:A robust moving mesh finite volume method applied to 1D hyperbolic conservation laws from magnetohydrodynamics. J. Comput. Phys. 216, 526-546 (2006) 45. Van Leer, B.:Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method. J. Comput. Phys. 32, 101-136 (1979) 46. Winslow, A.:Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh. J. Comput. Phys. 1, 149-172 (1967) 47. Xu, X., Ni, G., Jiang, S.:A high-order moving mesh kinetic scheme based on WENO reconstruction for compressible flows on unstructured meshes. J. Sci. Comput. 57, 278-299 (2013) 48. Zhang, X., Shu, C.-W.:On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091-3120 (2010) 49. Zhang, X., Shu, C.-W.:On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918-8934 (2010) |