1. Acosta, G., Bersetche, J.P.:A fractional Laplacian:regularity of solutions and fnite element approximations. SIAM J. Numer. Anal. 55, 472-495 (2017) 2. Acosta, G., Bersetche, F.M., Bothagarag, J.P.:A short FE implementation for a 2D homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. 74, 784-816 (2017) 3. Applebaum, D.:Lévy Processes and Stochastic Calculus. Cambridge University Press, New York (2009) 4. Brenner, S.C., Scott, L.R.:The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (2008) 5. Carr, P., Geman, H., Madan, D.B., Yor, M.:The fne structure of asset returns:an empirical investigation. J. Bus. 75, 305-332 (2002) 6. Deng, W.H., Li, B.Y., Tian, W.Y., Zhang, P.W.:Boundary problems for the fractional and tempered fractional operators. Multiscale Model. Simul. 16, 125-149 (2018) 7. Deng, W.H., Zhang, Z.J.:High Accuracy Algorithm for the Diferential Equations Governing Anomalous Difusion. World Scientifc, Singapore (2019) 8. Duo, S.W., Wyk, H.W.V., Zhang, Y.Z.:A novel and accurate fnite diference method for the fractional Laplacian and the fractional Poisson problem. J. Comput. Phys. 355, 233-252 (2018) 9. John, H., Ginn, T.R.:Nonlocal dispersion in media with continuously evolving scales of heterogenetity. Transp. Porous Media. 13, 123-138 (1993) 10. Mccay, B.M., Narasimhan, M.N.L.:Theory of nonlocal electromagnetic fuids. Arch. Mech. 33, 365-384 (1981) 11. Raible, S.:Lévy processes in fnance:theory, numerics, and empirical facts. Ph.D. thesis, Universitat Freiburg (2000) |