1. Adams, R.A.:Sobolev Spaces. Academic Press, New York (1975) 2. Allen, S.M., Cahn, J.W.:A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085-1095 (1979) 3. Achleitner, F., Kuehn, Ch.:Analysis and numerics of traveling waves for asymmetric fractional reaction-difusion equations. arXiv:1405.5779v1[math.NA] 22 (May 2014) 4. Baeumer, B., Kovacsa, M., Meerschaert, M.M.:Numerical solutions for fractional reaction-difusion equations. Comput. Math. Appl. 55, 2212-2226 (2008) 5. Bueno-Orovio, A., Kay, D., Burrage, K.:Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numer. Math. 54, 937-954 (2014) 6. Cabré, X., Roquejofre, J.-M.:The infuence of fractional difusion in Fisher-KPP equations. Commun. Math. Phys. 320, 679-722 (2013) 7. Castillo, P., Gómez, S.:On the conservation of fractional nonlinear Schrödinger equation's invariants by the local discontinuous Galerkin method. J Sci Comput. 5, 1-24 (2018) 8. Cifani, S., Jakobsen, E.R., Karlsen, K.H.:The discontinuous Galerkin method for fractal conservation laws. IMA J. Numer. Anal. 31, 1090-1122 (2011) 9. Cockburn, B., Shu, C.-W.:The local discontinuous Galerkin method for time-dependent convection-difusion systems. SIAM J. Numer. Anal. 35, 2440-2463 (1998) 10. Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.:Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-difusion problems. Math. Comp. 71, 455-478 (2003) 11. Deng, W.H., Hesthaven, J.S.:Local discontinuous Galerkin methods for fractional difusion equations. ESAIM Math. Model. Numer. Anal. 47, 1845-1864 (2013) 12. Du, Q., Yang, J.:Asymptotic compatible Fourier spectral approximations of nonlocal Allen-Cahn equations. SIAM J. Numer. Anal. 54, 1899-1919 (2016) 13. Ervin, V.J., Roop, J.P.:Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Dif. Equ. 22, 558-576 (2006) 14. Feng, X.B., Prohl, A.:Numerical analysis of the Allen-Cahn equation and approximation for mean curvature fows. Numer. Math. 94, 33-65 (2003) 15. Feng, X.L., Song, H., Tang, T., Yang, J.:Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Probl. Imaging 7, 679-695 (2013) 16. Guo, R.H., Ji, L.Y., Xu, Y.:High order local discontinuous Galerkin methods for the Allen-Cahn equation:analysis and simulation. J. Comput. Math. 34, 135-158 (2016) 17. Gottlieb, S., Shu, C.-W., Tadmor, E.:Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89-112 (2001) 18. Hou, T., Tang, T., Yang, J.:Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations. J. Sci. Comput. 72, 1214-1231 (2017) 19. Ji, X., Tang, H.Z.:High-order accurate Runge-Kutta (local) discontinuous Galerkin methods for oneand two-dimensional fractional difusion equations. Numer. Math. Theor. Meth. Appl. 5, 333-358 (2012) 20. Li, Z., Wang, H., Yang, D.P.:A space-time fractional phase-feld model with tunable sharpness and decay behavior and its efcient numerical simulation. J. Comput. Phys. 347, 20-38 (2017) 21. Mao, Z.P., Kamiadakis, G.E.:Fractional Burgers equation with nonlinear non-locality:spectral vanishing viscosity and local discontinuous Galerkin methods. J. Comput. Phys. 336, 143-163 (2017) 22. Podlubny, I.:Fractional Diferential Equations. Academic Press, New York (1999) 23. Shen, J., Yang, X.F.:Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discret. Contin. Dyn. Syst. 28, 1669-1691 (2010) 24. Shen, J.:Modeling and numerical approximation of two-phase incompressible fows by a phase-feld approach. In:Bao, W., Du, Q. (eds.) Multiscale Modeling and Analysis for Materials Simulation. Lecture Note Series, vol. 9, pp. 147-196. National University of Singapore, Singapore (2011) 25. Shen, J., Tang, T., Yang, J.:On the maximum principle preserving schemes for the generalized Allen-Cahn equation. Commun. Math. Sci. 14, 1517-1534 (2016) 26. Shu, C.-W.:High order WENO and DG methods for time-dependent convection-dominated PDEs:a brief survey of several recent developments. J. Comput. Phys. 316, 598-613 (2016) 27. Volpert, V.A., Nec, Y., Nepomnyashchy, A.A.:Fronts in anomalous difusion-reaction systems. Phil. Trans. R. Soc. A 371, 20120179 (2013) 28. Xu, Q.W., Hesthaven, J.S.:Discontinuous Galerkin method for fractional convection-difusion equations. SIAM J. Numer. Anal. 52, 405-423 (2014) 29. Yang, Q.Q., Liu, F.W., Turner, I.:Numerical methods for fractional partial diferential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200-218 (2010) 30. Zeng, F.H., Li, C.P., Liu, F.W., Burrage, K., Turner, I., Anh, V.:A Crank Nicolson ADI spectral method for a two dimensional Riesz space fractional nonlinear reaction difusion equation. SIAM J. Numer. Anal. 52, 2599-2622 (2014) 31. Zhuang, P.H., Liu, F.W., Anh, V., Turner, I.:Numerical methods for the variable-order fractional advection-difusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760-1781 (2009) |