1. Bu, W., Tang, Y., Yang, J.:Galerkin fnite element method for two-dimensional Riesz space fractional difusion equations. J. Comput. Phys. 276, 26-38 (2014) 2. Bu, W., Tang, Y., Wu, Y., Yang, J.:Crank-Nicolson ADI Galerkin fnite element method for twodimensional fractional FitzHugh-Nagumo monodomain model. Appl. Math. Comput. 257, 355-364 (2015) 3. Bu, W., Tang, Y., Wu, Y., Yang, J.:Finite diference/fnite element method for two-dimensional space and time fractional Bloch-Torrey equations. J. Comput. Phys. 293, 264-279 (2015) 4. Chen, M., Deng, W.:Fourth order scheme for the space fractional difusion equations. SIAM J. Numer. Anal. 52, 1418-1438 (2014) 5. Chen, M., Deng, W.:Fourth order diference approximations for space Riemann-Liouville derivatives based on weighted and shifted Lubich diference operators. Comm. Comput. Phys. 16, 516-540 (2014) 6. Choi, H.W., Chung, S.K., Lee, Y.J.:Numerical solutions for space fractional dispersion equations with nonlinear source terms. Bull. Korean Math. Soc. 47, 1225-1234 (2010) 7. Deng, W.:Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47, 204-226 (2008) 8. Deng, W., Hesthaven, J.S.:Discontinuous Galerkin methods for fractional difusion equations. ESAIM:M2AN 47, 1845-1864 (2013) 9. Diethelm, K.:Generalised compound quadrature formulae for fnite-part integrals. IMA J. Numer. Anal. 17, 479-493 (1997) 10. Diethelm, K.:An algorithm for the numerical solution of diferential equations of fractional order. Electron. Trans. Numer. Anal. 5, 1-6 (1997) 11. Ervin, V.J., Roop, J.P.:Variational formulation for the stationary fractional advection-dispersion equation. Numer. Methods Partial Difer. Equ. 22, 558-576 (2006) 12. Ervin, V.J., Roop, J.P.:Variational solution of fractional advection dispersion equations on bounded domains in Rd. Numer. Methods Partial Difer. Equ. 23, 256-281 (2007) 13. Ervin, V.J., Heuer, N., Roop, J.P.:Numerical approximation of a time dependent nonlinear, spacefractional difusion equation. SIAM J. Numer. Anal. 45, 572-591 (2007) 14. Fix, G.J., Roop, J.P.:Least squares fnite-element solution of a fractional order two-point boundary value problem. Comput. Math. Appl. 48, 1017-1033 (2004) 15. Ford, N.J., Xiao, J., Yan, Y.:Stability of a numerical method for space-time-fractional telegraph equation. Comput. Methods Appl. Math. 12, 1-16 (2012) 16. Ford, N.J., Rodrigues, M.M., Xiao, J., Yan, Y.:Numerical analysis of a two-parameter fractional telegraph equation. J. Comput. Appl. Math. 249, 95-106 (2013) 17. Ford, N.J., Pal, K., Yan, Y.:An algorithm for the numerical solution of two-sided space-fractional partial diferential equations. Comput. Methods Appl. Math. 15, 497-514 (2015) 18. Ilic, M., Liu, F., Turner, I., Anh, V.:Numerical approximation of a fractional-in-space difusion equation Ⅱ:with non-homogeneous boundary conditions. Frac. Calc. Appl. Anal. 9, 333-349 (2006) 19. Li, X.J., Xu, C.J.:A space-time spectral method for the time fractional difusion equation. SIAM J. Numer. Anal. 47, 2108-2131 (2009) 20. Li, X.J., Xu, C.J.:Existence and uniqueness of the weak solution of the space-time fractional difusion equation and a spectral method approximation. Commun. Comput. Phys. 8, 1016-1051 (2010) 21. Li, C., Zeng, F.:Finite diference methods for fractional diferential equations. Int. J. Bifurc. Chaos 22, 1230014 (2012) 22. Li, C., Zeng, F.:Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, New York (2015) 23. Li, Z., Liang, Z., Yan, Y.:High-order numerical methods for solving time fractional partial diferential equations. J. Sci. Comput. 71, 785-803 (2017) 24. Liu, F., Chen, S., Turner, I., Burrage, K., Anh, V.:Numerical simulation for two-dimensional Riesz space fractional difusion equations with a nonlinear reaction term. Cent. Eur. J. Phys. 11, 1221-1232 (2013) 25. Liu, F., Zhuang, P., Turner, I., Anh, V., Burrage, K.:A semi-alternating direction method for a 2-D fractional FitzHugh-Nagumo monodomain model on an approximate irregular domain. J. Comput. Phys. 293, 252-263 (2015) 26. Liu, Y., Yan, Y., Khan, M.:Discontinuous Galerkin time stepping method for solving linear space fractional partial diferential equations. Appl. Numer. Math. 115, 200-213 (2017) 27. Lubich, C.:Discretized fractional calculus. SIAM J. Math. Anal. 17, 704-719 (1986) 28. Lynch, V.E., Carreras, B.A., del-Castillo-Negrete, D., Ferreira-Mejias, K.M., Hicks, H.R.:Numerical methods for the solution of partial diferential equations of fractional order. J. Comput. Phys. 192, 406-442 (2003) 29. Meerschaert, M.M., Tadjeran, C.:Finite diference approximations for fractional advection-dispersion fow equations. J. Comput. Appl. Math. 172, 65-77 (2004) 30. Meerschaert, M.M., Tadjeran, C.:Finite diference approximations for two-sided space-fractional partial diferential equations. Appl. Numer. Math. 56, 80-90 (2006) 31. Meerschaert, M.M., Benson, D.A., Baeumer, B.:Multidimensional advection and fractional dispersion. Phys. Rev. E 59, 5026-5028 (1999) 32. Meerschaert, M.M., Schefer, H., Tadjeran, C.:Finite diference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249-261 (2006) 33. Shen, S., Liu, F.:Error analysis of an explicit fnite diference approximation for the space fractional difusion equation with insulated ends. ANZIAM J. 46, C871-C887 (2005) 34. Tadjeran, C., Meerschaert, M.M.:A second-order accurate numerical method for the two-dimensional fractional difusion equation. J. Comput. Phys. 220, 813-823 (2007) 35. Tadjeran, C., Meerschaert, M.M., Schefer, H.:A second-order accurate numerical approximation for the fractional difusion equation. J. Comput. Phys. 213, 205-213 (2006) 36. Tian, W., Zhou, H., Deng, W.:A class of second order diference approximations for solving space fractional difusion equations. Math. Comp. 84, 1703-1727 (2015) 37. Yan, Y., Pal, K., Ford, N.J.:Higher order numerical methods for solving fractional diferential equations. BIT Numer. Math. 54, 555-584 (2014) 38. Yang, Q., Liu, F., Turner, I.:Stability and convergence of an efective numerical method for the timespace fractional Fokker-Planck equation with a nonlinear source term. Int. J. Dif. Eqs. 2010, 464321 (2010). https://doi.org/10.1155/2010/464321 39. Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.:A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-difusion equation. SIAM J. Numer. Anal. 52, 2599-2622 (2014) 40. Zhang, N., Deng, W., Wu, Y.:Finite diference/element method for a two-dimensional modifed fractional difusion equation. Adv. Appl. Math. Mech. 4, 496-518 (2012) |