1. Antonietti, P., Canuto, C., Verani, M.:Convergence and optimality of adaptive hp-DG finite element methods for elliptic problems (in preparation) 2. Arnold, D.:An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742-760 (1982) 3. Arnold, D., Brezzi, F., Cockburn, B., Marini, L.D.:Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749-1779 (2002) 4. Bonito, A., Nochetto, R.H.:Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal. 48, 734-771 (2010) 5. Binev, P.:Tree approximation for hp-adaptivity. SIAM J. Numer. Anal. 56, 3346-3357 (2018) 6. Canuto, C., Nochetto, R.H., Stevenson, R., Verani, M.:Convergence and optimality of hp-AFEM. Numer. Math. 135, 1073-1119 (2017) 7. Canuto, C., Nochetto, R.H., Stevenson, R., Verani, M.:On p-robust saturation for hp-AFEM. Comput. Math. Appl. 73, 2004-2022 (2017) 8. Houston, P., Schötzau, D., Wihler, T.P.:Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems. Math. Models Methods Appl. Sci. 17, 33-62 (2007) 9. Mitchell, W.F., McClain, M.A.:A comparison of hp-adaptive strategies for elliptic partial differential equations. ACM Trans. Math. Softw. 41(1), 1-39 (2014) 10. Schwab, Ch.:p- and hp-Finite Element Methods. Oxford University Press, Oxford (1998) |