Communications on Applied Mathematics and Computation ›› 2019, Vol. 1 ›› Issue (2): 253-261.doi: 10.1007/s42967-019-00014-z

Previous Articles     Next Articles

Public “Cloud” Provisioning for Venus Express VMC Image Processing

J. L. Vázquez-Poletti1, M. P. Velasco2, S. Jiménez2, D. Usero1, I. M. Llorente1, L. Vázquez1, O. Korablev3, D. Belyaev3, M. V. Patsaeva3, I. V. Khatuntsev3   

  1. 1 Instituto de Matematica Interdisdiciplinar(IMI), Universidad Complutense de Madrid, 28040 Madrid, Spain;
    2 Universidad Politécnica de Madrid, 28040 Madrid, Spain;
    3 Space Research Institute of Russian Academy of Sciences(IKI), 117997 Moscow, Russia
  • Received:2018-04-17 Revised:2018-06-03 Online:2019-06-20 Published:2019-06-20
  • Contact: J. L. Vázquez-Poletti E-mail:jlvazquez@fdi.ucm.es
  • Supported by:
    J.L.Vázquez-Poletti and I.M.Llorente thank the support of the Ministerio de Economía y Competitividad under the project TIN2015-65469-P. M.P. Velasco, S.Jiménez, D.Usero and L. Vázquez thank the partial support of the Ministerio de Economía y Competitividad under the project ESP2016-79135-R. M.P. Velasco and L.Vázquez thank the support of Universidad Complutense de Madrid under the project PR261/16-20246. D.Usero and L.Vázquez thank the support of Instituto de Matemática Interdisciplinar at Universidad Complutense de Madrid.

Abstract: In this paper, we consider the implementation of the "cloud" computing strategy to study data sets associated to the atmospheric exploration of the planet Venus. More concretely, the Venus Monitoring Camera (VMC) onboard Venus Express orbiter provided the largest and the longest so far set of ultraviolet (UV), visible and near-IR images for investigation of the atmospheric circulation. To our best knowledge, this is the frst time where the analysis of data from missions to Venus is integrated in the context of the "cloud" computing. The followed path and protocols can be extended to more general cases of space data analysis, and to the general framework of the big data analysis.

Key words: Retrieval, Data integration, Cloud computing, Big data

CLC Number: