1. Ai, J., Xu, Y., Shu, C.-W., Zhang, Q.: L2 error estimate to smooth solutions of high order Runge-Kutta discontinuous Galerkin method for scalar nonlinear conservation laws with and without sonic points. SIAM J. Numer. Anal. 60(4), 1741–1773 (2022). https:// doi. org/ 10. 1137/ 21M14 35495 2. Cheng, Y., Meng, X., Zhang, Q.: Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations. Math. Comput. 86(305), 1233–1267 (2017). https:// doi. org/ 10. 1090/ mcom/ 3141 3. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545– 581 (1990). https:// doi. org/ 10. 2307/ 20085 01 4. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39(1), 264–285 (2001). https:// doi. org/ 10. 1137/ S0036 14290 03715 44 5. Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989). https:// doi. org/ 10. 1016/ 0021- 9991(89) 90183-6 6. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989). https:// doi. org/ 10. 2307/ 20084 74 7. Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws. RAIRO Modél. Math. Anal. Numér. 25(3), 337–361 (1991). https:// doi. org/ 10. 1051/ m2an/ 19912 50303 371 8. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998). https:// doi. org/ 10. 1006/ jcph.1998. 5892 9. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001). https:// doi. org/ 10. 1023/A: 10128 73910 884 10. Gottlieb, S., Ketcheson, D., Shu, C.-W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38(3), 251–289 (2009). https:// doi. org/ 10. 1007/ s10915- 008- 9239-z 11. Jiang, G., Shu, C.-W.: On a cell entropy inequality for discontinuous Galerkin methods. Math. Comput. 62(206), 531–538 (1994). https:// doi. org/ 10. 2307/ 21535 21 12. Liu, Y., Shu, C.-W., Zhang, M.: Optimal error estimates of the semidiscrete discontinuous Galerkin methods for two dimensional hyperbolic equations on Cartesian meshes using Pk elements. ESAIM Math. Model. Numer. Anal. 54(2), 705–726 (2020). https:// doi. org/ 10. 1051/ m2an/ 20190 80 13. Meng, X., Shu, C.-W., Wu, B.: Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85(299), 1225–1261 (2016). https:// doi. org/ 10. 1090/ mcom/ 3022 14. Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988). https:// doi. org/ 10. 1016/ 0021- 9991(88) 90177-5 15. Sun, Z., Shu, C.-W.: Strong stability of explicit Runge-Kutta time discretizations. SIAM J. Numer. Anal. 57(3), 1158–1182 (2019). https:// doi. org/ 10. 1137/ 18M12 2892X 16. Sun, Z., Wei, Y., Wu, K.: On energy laws and stability of Runge-Kutta methods for linear seminegative problems. SIAM J. Numer. Anal. 60(5), 2448–2481 (2022). https:// doi. org/ 10. 1137/ 22M14 72218 17. Wang, H., Li, F., Shu, C.-W., Zhang, Q.: Uniform stability for local discontinuous Galerkin methods with implicit-explicit Runge-Kutta time discretizations for linear convection-diffusion equation. Math. Comput. 92(344), 2475–2513 (2023). https:// doi. org/ 10. 1090/ mcom/ 3842 18. Xu, Y., Meng, X., Shu, C.-W., Zhang, Q.: Superconvergence analysis of the Runge-Kutta discontinuous Galerkin methods for a linear hyperbolic equation. J. Sci. Comput. 84, 23 (2020). https:// doi. org/ 10. 1007/ s10915- 020- 01274-1 19. Xu, Y., Shu, C.-W., Zhang, Q.: Error estimate of the fourth-order Runge-Kutta discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 58(5), 2885–2914 (2020). https:// doi. org/ 10. 1137/ 19M12 80077 20. Xu, Y., Zhang, Q.: Superconvergence analysis of the Runge-Kutta discontinuous Galerkin method with upwind-biased numerical flux for two dimensional linear hyperbolic equation. Commun. Appl. Math. Comput. 4, 319–352 (2022). https:// doi. org/ 10. 1007/ s42967- 020- 00116-z 21. Xu, Y., Zhang, Q., Shu, C.-W., Wang, H.: The L2-norm stability analysis of Runge-Kutta discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 57(4), 1574–1601 (2019). https:// doi. org/ 10. 1137/ 18M12 30700 22. Xu, Y., Zhao, D., Zhang, Q.: Local error estimates for Runge-Kutta discontinuous Galerkin methods with upwind-biased numerical fluxes for a linear hyperbolic equation in one-dimension with discontinuous initial data. J. Sci. Comput. 91, 11 (2022). https:// doi. org/ 10. 1007/ s10915- 022- 01793-z 23. Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42(2), 641–666 (2004). https:// doi. org/10. 1137/ S0036 14290 24041 82 24. Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates of the third order explicit RungeKutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48(3), 1038–1063 (2010). https:// doi. org/ 10. 1137/ 09077 1363 |