1. Baeza, A., Bürger, R., Mulet, P., Zorío, D.: Central WENO schemes through a global average weight. J. Sci. Comput. 78(1), 499–530 (2019). https:// doi. org/ 10. 1007/ s10915-018-0773-z 2. Baeza, A., Mulet, P., Zorío, D.: High order weighted extrapolation for boundary conditions for finite difference methods on complex domains with Cartesian meshes. J. Sci. Comput. 69(1), 170–200 (2016). https:// doi. org/ 10. 1007/ s10915-016-0188-7 3. Baeza, A., Mulet, P., Zorío, D.: Weighted extrapolation techniques for finite difference methods on complex domains with Cartesian meshes. In: Trends in Differential Equations and Applications, pp. 243–259, Springer, Cham (2016). https:// doi. org/ 10. 1007/ 978-3-319-32013-7_ 14 4. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Karpeyev, D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11-Revision 3.11, Argonne National Laboratory (2019) 5. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser Press, Boston (1997) 6. Balsara, D.S., Garain, S., Florinski, V., Boscheri, W.: An efficient class of WENO schemes with adaptive order for unstructured meshes. J. Comput. Phys. 404, 109062 (2020). https:// doi. org/ 10. 1016/j. jcp.2019. 109062 7. Borsche, R., Kall, J.: ADER schemes and high order coupling on networks of hyperbolic conservation laws. J. Comput. Phys. 273, 658–670 (2014). https:// doi. org/ 10. 1016/j. jcp. 2014. 05. 042 8. Cada, M., Torrilhon, M.: Compact third-order limiter functions for finite volume methods. J. Comput. Phys. 228(11), 4118–4145 (2009). https:// doi. org/ 10. 1016/j. jcp. 2009. 02. 020 9. Carpenter, M.H., Gottlieb, D., Abarbanel, S., Don, W.S.: The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: a study of the boundary error. SIAM J. Sci. Comput. 16(6), 1241–1252 (1995). https:// doi. org/ 10. 1137/ 09160 72 10. Castro-Dìaz, M.J., Semplice, M.: Third-and fourth-order well-balanced schemes for the shallow water equations based on the CWENO reconstruction. Int. J. Numer. Meth. Fluid 89(8), 304–325 (2019). https:// doi. org/ 10. 1002/ fld. 4700 11. Contarino, C., Toro, E., Montecinos, G., Borsche, R., Kall, J.: Junction-generalized Riemann problem for stiff hyperbolic balance laws in networks: an implicit solver and ADER schemes. J. Comput. Phys. 315, 409–433 (2016). https:// doi. org/ 10. 1016/j. jcp. 2016. 03. 049 12. Cravero, I., Puppo, G., Semplice, M., Visconti, G.: Cool WENO schemes. Comp. Fluids 169, 71–86 (2018). https:// doi. org/ 10. 1016/j. compfluid. 2017. 07. 022 13. Cravero, I., Puppo, G., Semplice, M., Visconti, G.: CWENO: uniformly accurate reconstructions for balance laws. Math. Comp. 87(312), 1689–1719 (2018). https:// doi. org/ 10. 1090/ mcom/ 3273 14. Cravero, I., Semplice, M.: On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes. J. Sci. Comput. 67, 1219–1246 (2016). https:// doi. org/ 10. 1007/ s10915-015-0123-3 15. Cravero, I., Semplice, M., Visconti, G.: Optimal definition of the nonlinear weights in multidimensional central WENOZ reconstructions. SIAM J. Numer. Anal. 57(5), 2328–2358 (2019). https:// doi. org/ 10. 1007/ s10915-015-0123-3 16. Don, W.S., Borges, R.: Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. J. Comput. Phys. 250, 347–372 (2013). https:// doi. org/ 10. 1016/j. jcp. 2013. 05. 018 17. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001) 18. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005). https:// doi. org/10. 1016/j. jcp. 2005. 01. 023 19. Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150(1), 97–127 (1999). https:// doi. org/ 10. 1006/ jcph. 1998. 6165 20. Hui, W., Li, P., Li, Z.: A unified coordinate system for solving the two-dimensional Euler equations. J. Comput. Phys. 153(2), 596–637 (1999). https:// doi. org/ 10. 1006/ jcph. 1999. 6295 21. Jiang, G.S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996) 22. Kolb, O.: On the full and global accuracy of a compact third order WENO scheme. SIAM J. Numer. Anal. 52(5), 2335–2355 (2014). https:// doi. org/ 10. 1137/ 13094 7568 23. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000). https:// doi. org/ 10. 1137/ S1064 82759 93594 61 24. Li, T., Shu, C.-W., Zhang, M.: Stability analysis of the inverse Lax-Wendroff boundary treatment for high order upwind-biased finite difference schemes. J. Computat. Appl. Math. 299, 140–158 (2016). https:// doi. org/ 10. 1016/j. cam. 2015. 11. 038 25. Liska, R.: http://www-troja.fjfi.cvut.cz/liska/CompareEuler/animations/ (2020) 26. Liska, R., Wendroff, B.: Comparison of several difference schemes for the Euler equations in 1D and 2D. In: Hou, T.Y., Tadmor, E. (eds) Hyperbolic Problems: Theory, Numerics, Applications, pp. 831–840. Springer-Verlag, Berlin, Heidelberg (2003). https:// doi. org/ 10. 1007/ 978-3-642-55711-8_78. The 9th International Conference on Hyperbolic Problems, Calf Inst Tech, Pasadena, Ca, Mar 25–29, 2002–2003 27. Lu, J., Fang, J., Tan, S., Shu, C.-W., Zhang, M.: Inverse Lax-Wendroff procedure for numerical boundary conditions of convection-diffusion equations. J. Comput. Phys. 317, 276–300 (2016). https:// doi. org/ 10. 1016/j. jcp. 2016. 04. 059 28. Lu, J., Shu, C.-W., Tan, S., Zhang, M.: An inverse Lax-Wendroff procedure for hyperbolic conservation laws with changing wind direction on the boundary. J. Comput. Phys. 426, 109940 (2021). https:// doi. org/ 10. 1016/j. jcp. 2020. 109940 29. Naumann, A., Kolb, O., Semplice, M.: On a third order CWENO boundary treatment with application to networks of hyperbolic conservation laws. Appl. Math. Comput. 325, 252–270 (2018). https:// doi. org/ 10. 1016/j. amc. 2017. 12. 041 30. Pirozzoli, S.: On the spectral properties of shock capturing schemes. J. Comput. Phys. 219, 489-497 (2006) 31. Schulz-Rinne, C.W.: Classification of the Riemann problem for two-dimensional gas dynamics. SIAM J. Math. Anal. 24, 76–88 (1993). https:// doi. org/ 10. 1137/ 05240 06 32. Semplice, M., Coco, A., Russo, G.: Adaptive mesh refinement for hyperbolic systems based on thirdorder compact WENO reconstruction. J. Sci. Comput. 66, 692–724 (2016). https:// doi. org/ 10. 1007/ s10915-015-0038-z 33. Semplice, M., Visconti, G.: Efficient implementation of adaptive order reconstructions. J. Sci. Comput. 83, 1 (2020). https:// doi. org/ 10. 1007/ s10915-020-01156-6 34. Semplice, M., Visconti, G.: claw1dArena v1.2 (2021). https:// doi. org/ 10. 5281/ zenodo. 26417 24 35. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: NASA/CR-97-206253 ICASE Report No.97-65 (1997) 36. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009). https:// doi. org/ 10. 1137/ 07067 9065 37. Shu, C.-W.: High order WENO and DG methods for time-dependent convection-dominated PDEs: a brief survey of several recent developments. J. Comput. Phys. 316, 598–613 (2016). https:// doi. org/ 10. 1016/j. jcp. 2016. 04. 030 38. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta Numer. 29, 701–762 (2020). https:// doi. org/ 10. 1017/ S0962 49292 00000 57 39. Shu, C.-W., Tan, S.: Inverse Lax-Wendroff procedure for numerical boundary treatment of hyperbolic equations. Handb. Numer. Anal. 18, 23–52 (2017). https:// doi. org/ 10. 1016/ bs. hna. 2016. 10. 001 40. Tan, S., Shu, C.-W.: Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws. J. Comput. Phys. 229(21), 8144–8166 (2010). https:// doi. org/ 10. 1016/j. jcp. 2010. 07. 014 41. Tan, S., Wang, C., Shu, C.-W., Ning, J.: Efficient implementation of high order inverse Lax-Wendroff boundary treatment for conservation laws. J. Comput. Phys. 231(6), 2510–2527 (2012). https:// doi. org/10. 1016/j. jcp. 2011. 11. 037 42. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2009) 43. Zhao, W., Huang, J., Ruuth, S.: Boundary treatment of high order Runge-Kutta methods for hyperbolic conservation laws. J. Comput. Phys. 421, 109697 (2020). https:// doi. org/ 10. 1016/j. jcp. 2020. 109697 44. Zhu, J., Qiu, J.: New finite volume weighted essentially nonoscillatory schemes on triangular meshes. SIAM J. Sci. Comput. 40(2), A903–A928 (2018). https:// doi. org/ 10. 1137/ 17M11 12790 |