Communications on Applied Mathematics and Computation ›› 2022, Vol. 4 ›› Issue (4): 1258-1279.doi: 10.1007/s42967-021-00172-z

• ORIGINAL PAPERS • 上一篇    下一篇

TM-Eigenvalues of Odd-Order Tensors

M. Pakmanesh, Hamidreza Afshin   

  1. Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
  • 收稿日期:2021-05-07 修回日期:2021-08-26 出版日期:2022-12-20 发布日期:2022-09-26
  • 通讯作者: Hamidreza Afshin,E-mail:afshin@vru.ac.ir;M. Pakmanesh,E-mail:mehri.pakmanesh@stu.vru.ac.ir E-mail:afshin@vru.ac.ir;mehri.pakmanesh@stu.vru.ac.ir

TM-Eigenvalues of Odd-Order Tensors

M. Pakmanesh, Hamidreza Afshin   

  1. Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
  • Received:2021-05-07 Revised:2021-08-26 Online:2022-12-20 Published:2022-09-26

摘要: In this paper, we propose a definition for eigenvalues of odd-order tensors based on some operators. Also, we define the Schur form and the Jordan canonical form of such tensors, and discuss commuting families of tensors. Furthermore, we prove some eigenvalue inequalities for Hermitian tensors. Finally, we introduce characteristic polynomials of odd-order tensors.

关键词: TM-product, TM-eigenvalue, TM-Schur form, TM-Jordan canonical form, Oddorder tensor, FM-upper (lower) triangular tensor

Abstract: In this paper, we propose a definition for eigenvalues of odd-order tensors based on some operators. Also, we define the Schur form and the Jordan canonical form of such tensors, and discuss commuting families of tensors. Furthermore, we prove some eigenvalue inequalities for Hermitian tensors. Finally, we introduce characteristic polynomials of odd-order tensors.

Key words: TM-product, TM-eigenvalue, TM-Schur form, TM-Jordan canonical form, Oddorder tensor, FM-upper (lower) triangular tensor

中图分类号: