1. Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M.:Scalable tensor factorizations with missing data. In:SIAM International Conference on Data Mining, pp. 701-712 (2010) 2. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, Jonathan:Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1-122 (2011) 3. Cabral, R., De La Torre, F., Costeira, J.P., Bernardino, A.:Unifying nuclear norm and bilinear factorization approaches for low-rank matrix decomposition. In:IEEE International Conference on Computer Vision, pp. 2488-2495 (2013) 4. Candès, E.J.S., Li, X., Ma, Y., Wright, J.:Robust principal component analysis? J. ACM 58(3), 1-73 (2011) 5. Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G.:Tensor decompositions for signal processing applications:from two-way to multiway component analysis. IEEE Signal Process. Mag. 32(2), 145-163 (2014) 6. Filipović, M., Jukić, A.:Tucker factorization with missing data with application to low-n-rank tensor completion. Multidimens. Syst. Signal Process. 26(3), 1-16 (2013) 7. Gandy, S., Recht, B., Yamada, I.:Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Probl. 27(2), 25010-25028(19) (2011) 8. Goldfarb, D., Qin, Z.:Robust low-rank tensor recovery:models and algorithms. SIAM J. Matrix Anal. Appl. 35(1), 225-253 (2013) 9. Harshman, R.A.:Foundations of the Parafac procedure:model and conditions for an "explanatory" multi-mode factor analysis. In:UCLA Working Papers (1969) 10. Håstad, J.:Tensor rank is NP-complete. J. Algorithms 11(4), 451-460 (2006) 11. Higham, N.:Matrix procrustes problems. Rapport technique, University of Manchester (1995) 12. Huang, B., Cun, M., Goldfarb, D., Wright, J.:Provable models for robust low-rank tensor completion. Pac. J. Optim. 11(2), 339-364 (2015) 13. Kolda, T.G., Bader, B.W.:Tensor decompositions and applications. SIAM Rev. 66(4), 294-310 (2005) 14. Li, X., Lin, S., Yan, S., Dong, X.:Discriminant locally linear embedding with high-order tensor data. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38(2), 342-352 (2008) 15. Li, Y., Yan, J., Zhou, Y., Yang, J.:Optimum subspace learning and error correction for tensors. In:European Conference on Computer Vision, pp. 790-803 (2010) 16. Lin, Z., Chen, M., Ma, Y.:The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. Technical Report, University of Illinois, Urbana-Champaign (2009) 17. Liu, G., Yan, S.:Active subspace:toward scalable low-rank learning. Neural Comput. 24(12), 3371-3394 (2012) 18. Liu, J., Musialski, P., Wonka, P., Ye, J.:Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208-220 (2013) 19. Mørup, M.:Applications of tensor (multiway array) factorizations and decompositions in data mining. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1(1), 24-40 (2011) 20. Nocedal, B.J., Wright, S.J.:Numerical Optimization. Springer, Berlin (2006) 21. Okutomi, M., Yan, S., Sugimoto, S., Liu, G., Zheng, Y.:Practical low-rank matrix approximation under robust ℓ1-norm. In:IEEE Conference on Computer Vision and Pattern Recognition, pp. 1410-1417 (2012) 22. Signoretto, M., Dinh, Q.T., De Lathauwer, L., Suykens, J.A.K.:Learning with tensors:a framework based on convex optimization and spectral regularization. Mach. Learn. 94(3), 303-351 (2014) 23. Signoretto, M., De Lathauwer, L., Suykens, J.A.K.:Nuclear norms for tensors and their use for convex multilinear estimation (2010) 24. Sun, J., Papadimitriou, S., Lin, C.Y., Cao, N., Liu, S., Qian, W.:Multivis:content-based social network exploration through multi-way visual analysis. In:SIAM International Conference on Data Mining, pp. 1064-1075 (2009) 25. Tan, H., Cheng, B., Feng, J., Feng, G., Wang, Wuhong, Zhang, Yu Jin:Low-n-rank tensor recovery based on multi-linear augmented Lagrange multiplier method. Neurocomputing 119(16), 144-152 (2013) 26. Tao, D., Li, X., Xindong, W., Maybank, S.J.:General tensor discriminant analysis and Gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700-1715 (2007) 27. Tucker, L.R.:Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279-311 (1966) 28. Xu, Y., Hao, R., Yin, W., Su, Z.:Parallel matrix factorization for low-rank tensor completion. Inverse Probl. Imaging 9(2), 601-624 (2015) 29. Yang, L., Huang, Z.H., Shi, X.:A fxed point iterative method for low n-rank tensor pursuit. IEEE Trans. Signal Process. 61(11), 2952-2962 (2013) |